Sequences and Series

Arithmetic Sequences

In an arithmetic sequence, consecutive terms change by a constant amount:

\mathbf{u}_1	\mathbf{u}_2	u_3	
a	a + d	a + 2d	

In general the nth term is given by:

$$u_n = a + (n - 1)d$$

Note that d is the **common difference** and **a** is the first term.

Example 1

For the arithmetic sequence 11, 13, 15, 17, ...

Find a formula for u_n the n^{th} term, and hence find

- a) the 25th term
- b) which term is 115
- c) which term is first to exceed 200

11, 13, 15, 17,...
$$a = 11, d = 2$$

 $u_n = a + (n-1)d$
 $= 11 + 2(n-1)$
 $= 11 + 2n - 2$
 $= 2n + 9$

a)
$$u_{25} = 2 \times 25 + 9$$

= 59

b)
$$u_n = 115$$

 $115 = 2n + 9$
 $106 = 2n$
 $n = 53$

c)
$$u_n > 200$$

 $2n + 9 > 200$
 $2n > 191$
 $n > 95.5$

the 96th term is the first to exceed 200

Example 2
The 4th term of an arithmetic sequence is 31 and the 9th term is 16 Find the 15th term of this sequence.

$$u_n = a + (n - 1)d$$

 $u_4 = 31$ $\Rightarrow a + 3d = 31$ (1)
 $u_9 = 16$ $\Rightarrow a + 8d = 16$ (2)

(2) – (1)
$$\Rightarrow 5d = -15$$

 $d = -3$
Sub in 1 $\Rightarrow a - 9 = 31$
 $a = 40$

[Note that d < 0 means the terms in the sequence are decreasing]

$$u_{15} = a + 14d$$

= $40 + 14 \times -3$
= -2

Exercise

1. An arithmetic sequence has first term 6, common difference 3 and $u_n = 72$. Find the value of n.

$$n = 23$$

2. An arithmetic sequence has first term -3, and $u_3 = 14$. Find the value of d.

$$d = \frac{17}{2}$$

3. An arithmetic sequence has common difference 9 and u_{16} = 68. Find the value of a.

$$a = -67$$