Proofs

Direct Proof

Example 1

This is a simple, *direct proof* that the sum of two integers is itself an even number.

Proof: Consider two even integers *x* and *y*.

Since they are even, they can be written as x = 2a and y = 2b respectively for integers a and b.

Then the sum x + y = 2a + 2b = 2(a + b)

From this, it is clear that x + y = has 2 as a factor and therefore is even, so the sum of any two even integers is even.

Example 2

Given that r and s are rational numbers, show that r + s is rational.

Proof: Since r and s are rational, we can write:

$$r = \frac{p}{q}$$
 and $s = \frac{m}{n}$ $m, n, p, q \in \mathbb{Z}$

Then
$$r + s = \frac{p}{q} + \frac{m}{n}$$

= $\frac{pn + qm}{qn}$

Since m, n, p, q are integers, pn + qm and qn are also integers.

Thus, by the calculation above, r + s is the quotient of two integers, and is therefore a rational number.

Example 3

Here's an example of a proof that is really just a calculation.

Given the trig identity $\sin(x + y) = \sin x \cos y + \cos x \sin y$, prove the identity: $\sin(2x) = 2\sin x \cos x$

Proof:
$$sin(2x) = sin(x + x)$$

= $sinxcosx + cosxsinx$
= $2sinxcosx$

Let n be a natural number. For each of the following statements, decide whether it is true or false. If true, give a proof; if false, give a counterexample. A If n is a multiple of 9 then so is n². B If n² is a multiple of 9 then so is n. 4 Let n be a natural number. For each of the following statements, decide whether it is true or false. If true, give a proof; if false, give a counterexample. A If n is a multiple of 9 then so is n. A Suppose n = 9m for some natural number [positive integer], m. Then n² = 81m² = 9(9m²) Hence n² is a multiple of 9, so A is true. - Conclusion of proof and state A rue.

2008 Q11

For each of the following statements, decide whether it is true or false and prove your conclusion.

- A For all natural numbers m, if m^2 is divisible by 4 then m is divisible by 4.
- B The cube of any odd integer p plus the square of any even integer q is always odd.

5

(a) Counter example $m = 2$.	1,1
So statement is false.	
(b) Let the numbers be $2n + 1$ and $2m$ then	1M
$(2n + 1)^3 + (2m)^2 = 8n^3 + 12n^2 + 6n + 1 + 4m^2$	1
$= 2(4n^3 + 6n^2 + 3n + 2m^2) + 1$	1
which is odd.	
OR	
Proving algebraically that either the cube of an odd number is odd	or the
square of an even number is even.	1
Odd cubed is odd and even squared is even.	1
So the sum of them is odd	1

2010 Q8 (a) Prove that the product of two odd integers is odd. 2 (b) Let p be an odd integer. Use the result of (a) to prove by induction that p^n is odd for all positive integers n. (a) Write the odd integers as: 2n + 1 and 2m + 1 where n and m are integers. Then 1M for unconnected odd integers (2n+1)(2m+1) = 4nm + 2n + 2m + 1= 2(2nm + n + m) + 1 1 demonstrating clearly which is odd. (b) Let n = 1, $p^1 = p$ which is given as odd. 1 Assume p^k is odd and consider p^{k+1} . 1 1M P is one and consider p. $p^{p+1} = p^p \times p$ Since p^p is assumed to be odd and p is odd, p^{k+1} is the product of two odd integers is therefore odd. Thus p^{n+1} is an odd integer for all n if p is an odd integer. 1 for a valid explanation from a previous correct argument