Complex Numbers

Complex Numbers

Since $x^2 \ge 0$ for every real number x, the equation $x^2 = -1$ has no real solutions.

To deal with this problem, mathematicians of the eighteenth century introduced the "imaginary" number,

$$i = \sqrt{-1}$$

which they assumed had the property

$$i^2 = \left(\sqrt{-1}\right)^2 = -1$$

but which otherwise could be treated like an ordinary number.

Expressions of the form

where a and b are real; numbers, were called "complex numbers" and these were manipulated according to the standard rules for arithmetic with the added property that $i^2 = -1$.

By the beginning of the nineteenth century it was recognised that a complex number could be regarded as an alternative symbol for the order pair

(a, b)

DEFINITION

A *complex number* is an ordered pair of real numbers, denoted either by (a, b) or by by a + bi, where $i^2 = -1$.

Note

$$i^{2} = -1$$

$$i^{3} = i^{2} \times i = -1$$

$$i^4 = i^2 \times i^2 = 1$$

Some examples of complex numbers in both notations are as follows:

ORDERED PAIR	EQUIVALENT
(3, 4)	3 + 4i
(-1, 2)	-1 + 2i
(0,1)	i
(2,0)	2
(4, -2)	4 - 2i

The Complex Plane

Sometimes it is convenient to use a single letter, such as z, to denote a complex number.

Thus we might write

$$z = a + bi$$

'a' is the REAL PART of z or Re(z)
'b' is the IMAGINARY PART of z or Im(z)

Thus Re(4 - 3i) = 4 and Im(4 - 3i) = -3

Exercise

$$z = 1 + i \text{ Re}z = 1$$
 $z = -\frac{5}{2} - \sqrt{3}i \text{ Re}z = \frac{5}{2}$
 $z = -\frac{5}{2} - \sqrt{3}i \text{ Re}z = \frac{5}{2}$
 $z = -\frac{5}{2} - \sqrt{3}i \text{ Re}z = \frac{5}{2}$

$$z = 10$$
 Re $z = 10$ $z = i$ Re $z = 0$ Im $z = 0$

Exercise

$$(2i)^{2}$$

$$= 2^{2}i^{2}$$

$$= -4$$

$$(\sqrt{3}i)^{2}$$

$$= 3i^{2}$$

$$= -3$$

$$(-3i)^{2}$$

$$= -9$$

$$(-\sqrt{\pi}i)^{2}$$

$$i = \sqrt{-1}$$

$$i^{2} = -1$$

$$= \pi i^{2}$$

Operations on Complex Numbers

Equating Complex Numbers

$$w = a + bi$$
 Suppose $w=z$ REAL PART PART PART $z = c + di$ $a + bi = c + di \Leftrightarrow a = c$ and $b = d$

Two complex numbers are equal if and only if (iff) both the real and imaginary parts are equal.

Example

$$x + 2yi = 3 + (x + 1)i$$
 where x, y R

Operations on Complex Numbers

Solving Equations (will return to this later)

Solve
$$z^2 - 2z + 5 = 0$$

$$z = \frac{2\pm\sqrt{4-20}}{2}$$

$$= \frac{2\pm\sqrt{-16}}{2} \qquad \sqrt{-16} = \sqrt{16}\sqrt{-1} = 4i$$

$$= \frac{2\pm4i}{2}$$

$$= 1\pm2i$$

Operations on Complex Numbers

Addition, Subtraction, Multiplication

- ullet Carry out operations as usual remembering $i^2 = -1$
- Collect together real and imaginary parts
- For division, rationalise the denominator by multiplying by the complex conjugate

Example

Let
$$z = 4 + 3i$$
 $w = 1 - 2i$

ADDITION

$$z + w = (4 + 3i) + (1 - 2i)$$

= $4 + 1 + 3i - 2i$
= $5 + i$

$$z - w = (4 + 3i) - (1 - 2i)$$

= 4 - 1 + 3i + 2i
= $\frac{3 + 5i}{2}$

Operations on Complex Numbers

Example

Let
$$z = 4 + 3i$$
 $w = 1 - 2i$

MULTIPLICATION

$$zw = (4 + 3i)(1 - 2i)$$

$$= 4 - 8i + 3i - 6i^{2}$$

$$= 4 - 5i + 6$$

$$= 10 - 5i$$

Operations on Complex Numbers

Example

Let
$$z = 4 + 3i$$
 $w = 1 - 2i$

BINOMIAL EXPANSION

 $z^4 =$