Algebraic Skills

The Binomial Theorem

This is the pattern for expanding powers of brackets of the form $(x+y)^n$ directly.

$$(x+y)^0 = 1$$
 We will record this answer as 1
 $(x+y)^1 = x+y$ We will record this answer as 11
 $(x+y)^2 = (x+y)(x+y)$
 $= x^2 + 2xy + y^2$ We will record this answer as 121
 $(x+y)^3 = (x+y)(x+y)^2$
 $= (x+y)(x^2 + 2xy + y^2)$
 $= x^3 + 2x^2y + xy^2 + yx^2 + 2xy^2 + y^3$
 $= x^3 + 3x^2y + 3xy^2 + y^3$ We will record this answer as 1331

```
(x+y)^4 = (x+y)(x+y)^3
= (x+y)(x^3+3x^2y+3xy^2+y^3)

= x^4+3x^3y+3x^2y^2+xy^3+x^3y+3x^2y^2+3xy^3+y^4

= x^4+4x^3y+6x^2y^2+4xy^3+y^4

We will record this answer as 14641
```

Note: In the expansion $(x + y)^n$

- (1) The sum of the powers of x and y in each term is n
- (2) As the powers of x decrease, the powers of y increase

Pascal's Triangle

The coefficients in the previous expansions can be recorded in a triangular array as follows

```
row 0 (n = 0) 1
row 1 (n = 1) 1 1
row 2 1 2 1
row 3 1 3 3 1
row 4 1 4 6 4 1
row 5 1 5 10 10 5 1
row 6 1 6 15 20 15 6 1
row 7 (n = 7) 1 7 21 35 35 21 7 1
```

Each row starts and ends with 1 and each number in-between is the sum of the two adjacent numbers in the row above.

The coefficients in every row are also symmetrical.

Examples Level C

Ex 1.
$$(x+5)^5 = 1.x^5 + 5.x^4.5 + 10.x^3.5^2 + 10.x^2.5^3 + 5.x.5^4 + 1.5^5$$

 $(15\ 10\ 10\ 5\ 1) = \frac{x^5 + 25x^4 + 250x^3 + 1250x^2 + 3125x + 3125}{1250x^3 + 1250x^3 + 1250x^3 + 1250x^3 + 3125x + 3125}$

Ex 2.
$$(2a-3)^4 = 1.(2a)^4 + 4.(2a)^3.(-3) + 6.(2a)^2.(-3)^2 + 4.(2a).(-3)^3 + 1.(-3)^4$$

 $(1 4 6 4 1) = 16a^4 - 96a^3 + 216a^2 - 216a + 81$

Binomial Worksheet Q1 - Q5

Examples Level A/B

Ex 3.
$$(2x^2 + 3)^3 = 1 \cdot (2x^2)^3 + 3 \cdot (2x^2)^2 \cdot 3^1 + 3 \cdot (2x^2)^1 \cdot 3^2 + 1 \cdot (3)^3$$

$$= 8x^6 + 36x^4 + 54x^2 + 27$$

Ex 4.

$$\left(x + \frac{1}{x}\right)^5 = x^5 + 5 \cdot x^4 \cdot \left(\frac{1}{x}\right)^1 + 10 \cdot x^3 \cdot \left(\frac{1}{x}\right)^2 + 10 \cdot x^2 \cdot \left(\frac{1}{x}\right)^3 + 5 \cdot x^1 \cdot \left(\frac{1}{x}\right)^4 + \left(\frac{1}{x}\right)^5$$
$$= x^5 + 5x^3 + 10x + \frac{10}{x} + \frac{5}{x^3} + \frac{1}{x^5}$$

1,5,10,10,5,1

Binomial Worksheet Q1 - Q5

Ex 5. Find the coefficient of x^3 in the expansion $(2x-3)(x+2)^5$

$$(x+2)^5 = x^5 + 5 \cdot x^4 \cdot 2 + 10 \cdot x^3 \cdot 2^2 + 10 \cdot x^2 \cdot 2^3 + 5 \cdot x \cdot 2^4 + 2^5$$
$$= x^5 + 10x^4 + 40x^3 + 80x^2 + 80x + 32$$

$$(2x-3)(x+2)^5 = (2x-3)(x^5+10x^4+40x^3+80x^2+80x+32)$$

Term in
$$x^3 = 2x \cdot 80x^2 - 3 \cdot 40x^3$$

= $160x^3 - 120x^3$
= $40x^3$

Hence the coefficient of x^3 is $\underline{40}$

Note

It is not necessary to expand $(2x-3)(x+2)^5$ fully to obtain the coefficient of one particular term.

Binomial Worksheet Q6 - Q8

