Proofs

Proof by Contradiction

Suppose we have two statements A and B, and we want to prove that if A is true then B is true (we write this as $A \Rightarrow B$, and say "if A then B").

One way of doing this is to assume that *A* is true but that *B* is false, and get a contradiction.

This is the method of **proof by contradiction**.

Example 1

Consider these two statements;

A n² is even

B n is even $n \in \mathbb{Z}$

Prove that $A \Rightarrow B$ by contradiction.

Proof: Assume that A is true but B is false.

A n² is even B n is odd

Then n is odd and n = 2m + 1 where $m \in \mathbb{Z}$

Then n is odd and n = 2m + 1 where $m \in \mathbb{Z}$

But:
$$(2m+1)^2 = 4m^2 + 4m + 1$$

= $2(2m^2 + m) + 1$
= $2r + 1$ $r \in \mathbb{Z}$

This shows that $(2m + 1)^2 = n^2$ is odd, which contradicts statement A.

Hence n must be even.

Example 2

A common question in assessments is to prove that, for some non-square integer a, \sqrt{a} is irrational.

The method below holds for all such a.

Example 2

Prove by contradiction that $\sqrt{7}$ is irrational.

Proof: Assume that it is rational.

Then
$$\sqrt{7} = \frac{m}{n}$$
 (*m* and *n* have no common factors)

$$7 = \frac{m^2}{n^2}$$

$$7n^2 = m^2$$
 m² is a multiple of $7 \Rightarrow$ m is divisible by 7

$$\therefore 7 \mid m$$

$$\therefore 7^2 \mid m^2$$

$$\therefore 7^2 | 7n^2$$
$$\therefore 7 | n$$

So, m and n have a common factor hence, by contradiction, $\sqrt{7}$ must be irrational.

Example 3

Prove by contradiction that $\sqrt{6}$ is irrational.

Proof: Assume that it is rational.

Then
$$\sqrt{6} = \frac{m}{n}$$
 (*m* and *n* have no common factors)

$$6 = \frac{m^2}{n^2}$$
$$6n^2 = m^2$$

$$6n^2 = m^2$$

 m^2 is a multiple of $6 \Rightarrow m$ is divisible by 6

$$\therefore 6^2 \mid m^2$$

$$1.6^2 | 6n^2$$

i.e. both divisible by 6

∴6|n So, m and n have a common factor hence, by contradiction, $\sqrt{6}$ must be irrational.

2010 Q12

Prove by contradiction that if x is an irrational number, then 2 + x is irrational. Prove by contradiction that if x is an irrational number, then 2 + x is rational.

Assume 2 + x is rational

and let
$$2 + x = \frac{p}{q}$$

where p, q are integers

So
$$x = \frac{p}{q} - 2$$

$$=\frac{p-2q}{q}$$

*express as a single fraction

Since p - 2q and q are integers, it follows that x is rational*.

This is a contradiction.

Exercise Q1

Prove that if $a \in \mathbb{Q}$ and x is irrational, then a + x is irrational.

A: $a\in\mathbb{Q}$ and x is irrational; B: a+x is irrational. Assume the negation of B, i.e., that a+x is rational. Then $\exists\,s,\,t\in\mathbb{Z}$ (with $t\neq 0$) s.t.

$$a + x = \frac{s}{t}$$

$$x = \frac{s}{t} - a$$

$$x = \frac{s - at}{t}$$

Hence, $a \in \mathbb{Q}$ and s, $t \in \mathbb{Z}$ imply that $\frac{s-at}{t} = x \in \mathbb{Q}$, which contradicts the assumed irrationality of x.

Exercise Q2

Prove that if $x^3 + 7x > 0$, then x > 0.

Assume that $x^3+7x>0$ and $x\leq0.$ Then, $x^3\leq0$ and $7x\leq0.$ Thus,

$$x^3 + 7x \leq 0 + 0$$

$$x^3 + 7x \leq 0$$

This clearly violates the assumption that $x^3 + 7x > 0$. Hence, x > 0.