Proofs

Principle of Mathematical Induction (PMI)

Suppose we know two facts:

- (1) P(1) is true;
- (2) whenever P(k) is true, P(k + 1) is also true.

Then P(n) is true for all positive integers n.

In applying this Principle, we often refer to:

- (1) as the base step,
- (2) as the inductive step.

Note/ the assumption that P(k) is true is called the inductive hypothesis.

Induction is a method of proving an implication by the following:

- 1) Prove the implication is true for some starting value (usually 1)
- 2) Assume the implication is true for some succeeding value (usually k)
- **3)** Prove that if the implication is true for the value k, it is also true for the value k+1.

Note/ the combination of (1) and (3) above proves the implication for all values.

 $\forall x$ "for all x"

Example 1

Prove by induction that $n^3 + 2n$ is divisible by $3 \forall n \ge 1, n \in \mathbb{N}$

Note/ the above can also be written as:

- $(1) 3 | n^3 + 2n$
- (2) 3 is a factor of $n^3 + 2n$

Prove true for n = 1

 $1^3 + 2(1) = 3$ which is divisible by 3.

 \therefore true for n = 1

Assume true for $n = k \implies k^3 + 2k = 3t$ $t \in \mathbb{N}$

Assume true for $n = k \implies k^3 + 2k = 3t$ $t \in \mathbb{N}$

Prove true for n = k + 1

$$\begin{split} (k+1)^3 + 2(k+1) &= k^3 + 3k^2 + 3k + 1 + 2k + 2 \\ &= k^3 + 2k + 3k^2 + 3k + 3 \\ &= 3t + 3(k^2 + k + 1) \\ &= 3(t+k^2+k+1) \quad \text{which is divisible by 3.} \end{split}$$

Hence if true for n = k, it is also true for n = k + 1.

Since true for n = 1 then by PMI n³ + 2n is divisible by 3 $\forall n \ge 1$, $n \in \mathbb{N}$

Example 2

Prove by induction that $2^n > n \quad \forall n \in \mathbb{N}$

Prove true for n = 1

LHS: $2^1 = 2$ RHS: 1

LHS = RHS

 \therefore true for n = 1

Assume true for $n = k \implies 2^k > k$

Assume true for $n = k \implies 2^k > k$

Prove true for n = k + 1

$$2^{k+1} = 2^k \times 2^1$$

$$> k \times 2 \qquad \text{since } 2^k > k$$

$$> 2k$$

$$> k+1 \qquad \text{since } k \ge 1$$

Hence if true for n = k, it is also true for n = k + 1.

Since true for n = 1 then by PMI $2^n > n \forall n \in \mathbb{N}$

Example 3

Prove by induction that $8 \mid 3^{2n} - 1 \quad \forall n \in \mathbb{N}$

Prove true for n = 1

 $3^{2(1)}$ - 1 = 3^2 - 1 = 8 which is divisible by 8

 \therefore true for n = 1

Assume true for $n = k \implies 3^{2k} - 1 = 8t$

Assume true for $n = k \implies 3^{2k} - 1 = 8t$

Prove true for n = k + 1

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

= $3^{2k} \times 3^2 - 1$
= $9 \times 8t$
= $72t$ which is divisible by 8.

Hence if true for n = k, it is also true for n = k + 1.

Since true for n = 1 then by PMI 8 | 3^{2n} - 1 $\forall n \in \mathbb{N}$