

The Determinant of a 2×2 matrix

The determinant of a square matrix is a number associated with the matrix.

Determinants have important applications and properties. The determinant of a square matrix A is denoted by det(A) or |A|.

The determinant of a 2×2 matrix is defined as follows:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

If ad-bc = 0, there is no inverse and A is called **singular**.

Example 1

Find
$$\begin{vmatrix} 4 & 3 \\ -1 & -2 \end{vmatrix}$$

$$= -8 - (-3)$$

 $= -5$

The Determinant of a 3×3 matrix

The process for evaluating the determinant of a 3×3 matrix is best illustrated by example.

= -96

Example 3
Find
$$det \begin{pmatrix} 2 & -3 & 4 \\ 1 & 2 & 1 \\ 0 & 5 & -2 \end{pmatrix}$$

$$= 2 \begin{vmatrix} 2 & 1 \\ 5 & -2 \end{vmatrix} - (-3) \begin{vmatrix} 1 & 1 \\ 0 & -2 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 0 & 5 \end{vmatrix}$$

$$= 2(-9) + 3(-2) + 4(5)$$

$$= -4$$

Example 4

Example 4
Find the values of x for which $det\begin{pmatrix} x & 2 & 3 \\ 1 & x+1 & 4 \\ x+3 & 2 & 1 \end{pmatrix} = 31$

$$= x \begin{vmatrix} x+1 & 4 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 4 \\ x+3 & 1 \end{vmatrix} + 3 \begin{vmatrix} 1 & x+1 \\ x+3 & 2 \end{vmatrix}$$

$$= x(x-7) - 2(1 - (4x+12)) + 3(2 - (x^2 + 4x + 3))$$

$$= x^2 - 7x + 8x + 22 - 3x^2 - 12x - 3$$

$$= -2x^2 - 11x + 19$$

$$\therefore -2x^2 - 11x + 19 = 31$$

$$-2x^2 - 11x - 12 = 0$$

$$2x^2 + 11x + 12 = 0$$

$$(2x + 3)(x + 4) = 0$$

$$Sol^n$$
 is $x = -\frac{3}{2}$ and $x = -4$

A useful rule.....

(see 2007 Q5)

 $detAB = detA \times detB$