Differential Equations (1)

A differential equation is an equation connecting x, y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

The order of the differential equation is the value of the largest differential.

For example 1) $y \frac{dy}{dx} + 2xy = x$ 2) $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 4 = \sin x$ 1) is of the **first order** and 2) is of the **second order**

In order to solve a differential equation in the variables x and y, it is necessary to find some function y = f(x) which satisfies the equation.

Let us consider the first order differential equation $\frac{dy}{dx} = 2x + 3$. We know, by integration, that solutions to this differential equation will be of the form $y = x^2 + 3x + C$. This is called a **general solution**.

A **particular solution** is found by choosing values of x and y.

First Order Differential Equations with Variables Separable

Any first order differential equation that can be expressed in the form

$$f(y)\frac{dy}{dx} = g(x)$$

can be solved by separating the variables (variable separable)

Suppose
$$f(y)\frac{dy}{dx} = g(x)$$
$$\int f(y)dy = \int g(x)dx$$

Ex 1 Find the general solution of
$$y\frac{dy}{dx} = \frac{1}{x^2}$$
 (× dx)
$$ydy = \frac{1}{x^2}dx$$
 The variables have been separated
$$\int ydy = \int \frac{1}{x^2}dx$$

$$\frac{1}{2}y^2 = -\frac{1}{x} + C$$

$$y^2 = -\frac{2}{x} + C$$
(Normally we will want to write y explicitly)

Ex 2 Find the general solution of
$$(x+2)\frac{dy}{dx} = 1$$
 $\stackrel{\times}{\div} (x+2)$ $dy = \frac{dx}{x+2}$ The variables have been separated
$$\int dy = \int \frac{1}{x+2} dx$$
 $y = \ln(x+2) + C$

Ex 3 Show that the general solution of
$$x^2 \frac{dy}{dx} = y + 3$$

can be written as $y = Ae^{-\frac{1}{x}} - 3$

$$x^2 dy = (y + 3)dx$$

$$\frac{dy}{y + 3} = \frac{dx}{x^2}$$

$$\int \frac{1}{y + 3} dy = \int \frac{1}{x^2} dx$$

$$\ln(y + 3) = -\frac{1}{x} + C$$

$$y + 3 = e^{-\frac{1}{x} + C}$$

$$y = e^{-\frac{1}{x} + C} - 3$$

$$et A = e^C$$

$$y = Ae^{-\frac{1}{x}} - 3$$

Ex 4 Find the general solution of
$$\frac{dy}{dx} = 4y$$

Express y explicitly in terms of x .

$$\frac{dy}{dx} = 4y$$

$$dy = 4ydx$$

$$\frac{1}{y}dy = 4dx$$
 The variables have been separated
$$\int \frac{1}{y}dy = \int 4dx$$

$$\ln y = 4x + C \qquad (e^{\wedge})$$

$$y = e^{4x+C}$$

$$y = e^{4x}e^{c}$$

$$y = Ae^{4x} \qquad (\text{Where } A = e^{C})$$

Ex 5 Find the general solution of
$$e^{4y} \frac{dy}{dx} - x = 2$$

Express y explicitly in terms of x

$$e^{4y}\frac{dy}{dx} - x = 2$$

$$e^{4y}\frac{dy}{dx} = x + 2 \qquad \times dx$$

$$e^{4y}dy = (x+2)dx$$
 The variables have been separated

$$\int e^{4y} dy = \int (x+2) dx$$

$$\frac{1}{4}e^{4y} = \frac{1}{2}x^2 + 2x + C \quad (\times 4)$$
$$e^{4y} = 2x^2 + 8x + C \quad (\ln)$$

$$e^{4y} = 2x^2 + 8x + C$$
 (ln)

$$4y = \ln\left(2x^2 + 8x + C\right)$$

$$y = \frac{1}{4}\ln\left(2x^2 + 8x + C\right)$$

Ex 6 Find the general solution of
$$\frac{dy}{dx} = 2x\sqrt{9-y^2}$$

Express y explicitly in terms of x
$$\frac{dy}{dx} = 2x\sqrt{9 - y^2} \times dx$$

$$dy = 2x\sqrt{9 - y^2} dx \qquad \div \sqrt{9 - y^2}$$

 $\frac{1}{\sqrt{9-y^2}} dy = 2x dx$ The variables have been separated

$$\int \frac{1}{\sqrt{9 - y^2}} \, dy = \int 2x \, dx$$

$$\sin^{-1}\left(\frac{y}{3}\right) = x^2 + C \qquad (\sin)$$

$$\frac{y}{3} = \sin\left(x^2 + C\right)$$

$$y = 3\sin\left(x^2 + C\right)$$

Ex 7 (a) Express
$$\frac{2x+3}{x(x+1)}$$
 in partial fractions

- (b) Hence find the general solution of $x(x+1)\frac{dy}{dx} = y(2x+3)$ expressing y in terms of x.
- (a) It can be shown that $\frac{2x+3}{x(x+1)} = \frac{3}{x} \frac{1}{x+1}$

(b)
$$x(x+1)\frac{dy}{dx} = y(2x+3)$$
$$x(x+1)dy = y(2x+3)dx$$
$$\frac{1}{y}dy = \frac{2x+3}{x(x+1)}dx$$
$$\int \frac{1}{y}dy = \int \frac{2x+3}{x(x+1)}dx$$
$$\int \frac{1}{y}dy = \int \left(\frac{3}{x} - \frac{1}{x+1}\right)dx$$
$$\ln y = 3\ln x - \ln(x+1) + C$$

$$\ln y = \ln(x^3) - \ln(x+1) + C$$

$$\ln y = \ln\left(\frac{x^3}{x+1}\right) + C \quad (e^{\wedge})$$

$$y = \left(\frac{x^3}{x+1}\right) \cdot e^{c}$$

$$y = \frac{Ax^3}{x+1} \qquad \text{(Where } A = e^{c}\text{)}$$

Particular Solutions of Differential Equations

Ex 1 Find the particular solution of
$$\frac{dy}{dx} = x(y-2)$$
, given $x = 0$ when $y = 5$.

$$\frac{dy}{y-2} = xdx$$
The variables have been separated
$$\int \frac{dy}{y-2} = \int xdx$$

$$\ln(y-2) = \frac{1}{2}x^2 + C$$
When $x = 0$, $y = 5$ then $C = \ln 3$

$$\ln(y-2) = \frac{1}{2} x^2 + \ln 3$$

$$\ln(y-2) - \ln 3 = \frac{1}{2} x^2$$

$$\ln\left(\frac{y-2}{3}\right) = \frac{1}{2} x^2 \qquad (e^{\wedge})$$

$$\frac{y-2}{3} = e^{\frac{1}{2}x^2}$$

$$\underline{y = 3e^{\frac{1}{2}x^2} + 2}$$

2012 Q15
(a) Express $\frac{1}{(x-1)(x+2)^2}$ in partial fractions.

Marks 4

(b) Obtain the general solution of the differential equation

$$(x-1)\frac{dy}{dx} - y = \frac{x-1}{(x+2)^2},$$

expressing your answer in the form y = f(x).

7

2013 Q16

In an environment without enough resources to support a population greater than 1000, the population P(t) at time t is governed by Verhurst's law

$$\frac{dP}{dt} = P(1000 - P).$$

Show that

$$\ln \frac{P}{1000 - P} = 1000t + C \quad \text{for some constant } C.$$

Hence show that

$$P(t) = \frac{1000K}{K + e^{-1000t}} \qquad \text{for some constant } K.$$

Given that P(0) = 200, determine at what time t, P(t) = 900.