Vectors

Equation of a Line (3 Dimensions)

Vector Form

Let P be any point on the line L.

L passes through the point A with direction \underline{d}

$$\overrightarrow{AP} = t\underline{d}$$

$$\underline{p} - \underline{a} = t\underline{d}$$

$$\underline{p} = \underline{a} + t\underline{d}$$
 (vector equation)

Equation of a Line (3 Dimensions)

Parametric Form

P(x, y, z), A(x₁, y₁, z₁) and
$$\underline{d} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + t \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\Rightarrow x = x_1 + ta$$

$$y = y_1 + tb$$

$$z = z_1 + tc$$

(parametric equations) (t is the parameter)

Equation of a Line (3 Dimensions)

Symmetric Form

(change subject of parametric equations to t)

 $x = x_1 + ta$ $y = y_1 + tb$ $z = z_1 + tc$ (parametric equations)

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} = t$$

Example

Find the equations of the line passing through A(2, 1, 3)and B(3, 4, 5).

Direction of Line (
$$\underline{d}$$
) = \overline{AB} = $\underline{b} - \underline{a} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$

Point on Line = A(2, 1, 3)

Vector Equation:
$$\underline{p} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

Parametric Equations: x = 2 + t, y = 1 + 3t, z = 3 + 2t

Symmetric Form:
$$\frac{x-2}{1} = \frac{y-1}{3} = \frac{z-3}{2}$$

Direction of Line =
$$\overrightarrow{AB} = \underline{b} - \underline{a} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

Point on Line = A(2, 1, 3)

Symmetric Form:
$$\frac{x-2}{1} = \frac{y-1}{3} = \frac{z-3}{2}$$

Note (1)/ the coordinates of the point on the line can be read from the numerators and the vector parallel (d) to the line can be read from the denominators.

Example

Find the symmetric form of the equation of the line through the point (6, 3, -5).

(i) in the direction
$$\begin{pmatrix} 4 \\ -8 \\ 7 \end{pmatrix}$$

(ii) parallel to the line
$$\frac{x}{3} = \frac{y-10}{-2} = \frac{z+8}{13}$$

(i)
$$\frac{x-6}{4} = \frac{y-3}{-8} = \frac{z+5}{7}$$

(i)
$$\frac{x-6}{4} = \frac{y-3}{-8} = \frac{z+5}{7}$$
 (ii) $\frac{x-6}{3} = \frac{y-3}{-2} = \frac{z+5}{13}$

Numerator: point on line Denominator: direction

Since both lines must have the same direction vector.

Note (2)/

- (1) "= t" is often omitted in the symmetric form
- (2) if any component of d is 0 then some parts of the symmetric form will be undefined, in which case the parametric form is better
- (3) each point on L is uniquely associated with a value of the parameter t
- (4) the equations of a particular line are not unique e.g. in above example

Page 66 Ex9A Q1ab 2a 3ace 4 5