Sequences and Series

Geometric Sequences

Consider the sequence 1, 2, 4, 8, 16, ...

The first term is 1 and the terms are multiplied by 2 each time.

This is a **geometric sequence** with first term a = 1 and common ratio r = 2.

The n^{th} term is denoted u_n and in general:

$$u_n = ar^{n-1}$$

Example 1

Find the 10th term of the geometric sequence 7, 14, 28, 56, . . .

$$a = 7, r = 2$$

 $u_n = ar^{n-1}$
 $u_{10} = ar^9$
 $u_{10} = 7 \times 2^9$
 $u_{10} = \frac{3584}{2}$

Example 2

Find the 7th term of the geometric sequence 45, -30, 20, -13 $\frac{1}{3}$

$$a = 45, r = \frac{-30}{45} = \frac{-2}{3}$$

$$u_n = ar^{n-1}$$

$$u_7 = ar^6$$

$$= 45 \times \left(\frac{-2}{3}\right)^6$$

$$= 3\frac{77}{81}$$

Example 3

A geometric sequence of positive terms has 3^{rd} term 72 and 7^{th} term $4\frac{1}{2}$. Find the 6^{th} term of this sequence.

$$u_n = ar^{n-1}$$

 $u_3 = 72 \Rightarrow ar^2 = 72$ (1)
 $u_7 = 4\frac{1}{2} \Rightarrow ar^6 = 4\frac{1}{2}$ (2)

(2) ÷ (1)
$$\frac{ar^{6}}{ar^{2}} = \frac{4\frac{1}{2}}{72}$$
$$r^{4} = \frac{1}{16} \implies r = \pm \frac{1}{2}$$

But, $r \neq -\frac{1}{2}$ since all terms are positive hence $r = \frac{1}{2}$.

Sub
$$r = \frac{1}{2}$$
 in (1) $ar^2 = 72$
 $a \times (\frac{1}{2})^2 = 72$
 $a = \frac{72}{\frac{1}{4}} = 288$
 $u_6 = ar^5$
 $= 288 \times (\frac{1}{2})^5$
 $= \frac{9}{2}$