Sequences and Series

Geometric Series

$$S_n = \frac{a(1-r^n)}{1-r}$$
; $r \neq 1$ use this when $r < 1$

$$S_n = \frac{a(r^n - 1)}{r - 1}, r \neq 1$$
 use this when $r > 1$

Example 1

Find the sum of the first 9 terms of the geometric series

$$a = 4$$
, $r = 2$ and $n = 9$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_9 = \frac{4(2^9 - 1)}{2 - 1}$$

$$S_9 = 4(2^9 - 1)$$

$$S_9 = 2044$$

Example 2

Evaluate $\sum_{k=1}^{20} 0.9^k$ giving your answer correct to 3 d.p.

$$k = 1$$
 $k = 2$... $k = 20$

$$0.9^1$$
 0.9^2 ... 0.9^{20} $a = 0.9$, $r = 0.9$

$$a = 0.9, r = 0.9$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$=\frac{0.9(1-0.9^{20})}{1-0.9}$$

$$= 7.906 (3d.p)$$

Example 3

Evaluate the sum of the geometric series

$$a = 4$$
, $r = 5$

We must determine how many terms are in the series.

We know that
$$u_n = 625000$$
 $\Rightarrow ar^{n-1} = 62500$
 $4 \times 5^{n-1} = 62500$
 $5^{n-1} = 15625$
 $ln5^{n-1} = ln15625$
 $(n-1)ln5 = ln15625$

$$n - 1 = \frac{\ln 15625}{\ln 5}$$
$$n = 7$$

There are 7 terms in the series.

$$a = 4$$
, $r = 5$, $n = 7$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$=\frac{4(5^7-1)}{5-1}$$

Example 4

Find the sum of the geometric series

$$a = 6$$
, $r = 2$ and $n = ?$

We must determine how many terms are in the series. We know that $U_n = 49\ 152$

$$u_n = ar^{n-1}$$

$$49152 = 6 \times 2^{n-1}$$

$$2^{n-1} = \frac{49152}{6}$$

$$2^{n-1} = 8192$$

$$\ln(2^{n-1}) = \ln 8192$$

$$(n-1)\ln 2 = \ln 8192$$

$$n-1 = \frac{\ln 8192}{\ln 2}$$

$$n-1 = 13$$

$$n = 14$$

There are 14 terms in the series.

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_{14} = \frac{6(2^{14} - 1)}{2 - 1} = \underline{98298}$$

Example 4

Find the least number of terms of the geometric series 4 + 12 + 36 + 108 + ... which must be added to give a sum exceeding 1 000 000.

$$a = 4$$
, $r = 3$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
$$= \frac{4(3^n - 1)}{3 - 1}$$
$$= 2(3^n - 1)$$

$$2(3^{n} - 1) > 1000000$$

$$3^{n} - 1 > 500000$$

$$3^{n} > 500001$$

$$ln3^{n} > ln500001$$

$$nln3 > ln500001$$

$$n > \frac{ln500001}{ln3}$$

$$n > 11.94$$

This means that at least 12 terms must be added to give a sum exceeding 1 $000\ 000$.

Example 6

Find the geometric series 8 + 24 + 72 + 216 + ...

Find the least number of terms which much be taken to give a sum exceeding 1, 000, 000.

$$a = 8, r = 3$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$= \frac{8(3^n - 1)}{3 - 1}$$

$$= 4(3^n - 1)$$

$$Set S_n=1\ 000\ 000$$

$$1\ 000\ 000=4(3^n-1)$$

$$250000=3^n-1$$

$$250001=3^n$$

$$ln(3^n)=ln\ 250001$$

$$nln3=ln\ 250001$$

$$n=\frac{ln\ 250001}{ln\ 3}$$

$$n=11.31.....$$
Check
$$S_n=4(3^n-1)$$

$$S_{11}=708\ 584\ <1\ 000\ 000$$

$$S_{12}=2\ 125\ 760>1\ 000\ 000$$

So we need at least 12 terms.

Exercise

A geometric sequence has first term 1 and common ratio 4.

Find the smallest value of *n* for which $S_n > 2649$. $\mathbf{r} = -\frac{1}{7}$

A geometric sequence has ratio $\frac{1}{5}$ and $S_3 = \frac{1}{25}$.

Find the first term.
$$a = \frac{1}{31}$$