Functions

Odd and Even Functions

Even

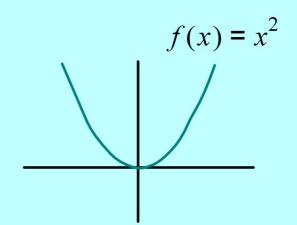
Produces same answers on both sides.

- 1. f(-x) = f(x)
- 2. curve symmetrical about y-axis

Example

$$f(x) = x^2$$
 is an even function.

1.
$$f(-x) = (-x)^{2}$$
$$= x^{2}$$
$$= f(x)$$



Odd and Even Functions

Odd

Produces same answers on both sides only one positive and one negative.

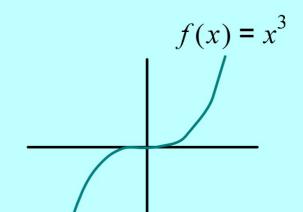
$$1. f(-x) = -f(x)$$

2. curve has half turn symmetry about the Origin

Example

 $f(x) = x^3$ is an odd function.

1.
$$f(-x) = (-x)^3$$
$$= -x^3$$
$$= -f(x)$$



For polynomial functions:

All ODD powers \rightarrow ODD function: e.g. $x^3 + 2x$

All EVEN powers \rightarrow EVEN function: e.g. x^6 - $2x^2$ + 3

e.g.
$$f(x) = cosx + x^2 : f \text{ is even.}$$

 $g(x) = x + sinx : g \text{ is odd.}$

 $h(x) = x^3 + x^2 + x$: h is neither even nor odd, but it is the sum of an even function (x^2) and an odd function $(x^3 + x)$.

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

Example

Investigate whether the function $f(x) = x^3 \sin x$ is Odd or Even.

$$f(-x) = (-x)^{3}\sin(-x)$$
$$f(-x) = -x^{3} \times -\sin x$$
$$f(-x) = x^{3}\sin x$$

Hence $\underline{f(-x)} = \underline{f(x)}$ so f is an Even function.