Curve Sketching

Asymptotes

An asymptote is a straight line to which a curve approaches more
and more closely as x becomes larger or smaller, or approaches a
certain value.

Example

At x = 90° the value of tanxris undefined .". the line x = 90 is called
an asymptote. | ’ ‘




Vertical Asymptotes are found from the zeroes of the denominator and
are in the form x = .

The way the curve approaches the asymptote must also be determined.

Example .
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For a vertical asymptote (VA) the denominator is equal to zero.

So(x+4)(x+1)=0

The eq"s of the VA are x =-4 orx =-1

How does f(x) behave in the neighbourhood of x = -4 and x = -1?
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Behaviour
x=-4

approaching from the left

the resulting 'signs' from subst.
a number really close to the VA
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Non Vertical Asymptotes are in the form y = ¢ (horizontal) or
y = mx + c (slant or oblique).
The way the curve approaches the asymptote must also be determined.

We can find NVA by considering how the function behaves as x>,
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rTop Tips

1) if the degree of the numerator 2 degree of the denominator, divide
the numerator by the denomator using long division

2) if the degree of the numerator < degree of the denominator, divide

cach term by the highest power of x.
. J

Example 1
Find the NVA for the function f (x)= _2x+3

x2+5x+4

e ..
f (x ) —_— deg top < deg bottom; divide each term
by highest power of x
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As x — += (large positive and negative values of x) all tend to zero.

Hence NVA eq" is y = 0 (a horizontal asymptote)



Behaviour b
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Let us now consider how the curve approaches v = 0.

Asx — 4o f(x)=>0"

(above the value of 0, since the fraction will be very small and positive)

Asx—-=  f(x)—>0

(below the value of 0, since the fraction will be very small and negative)

f(x) =2 0"
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Example 2
X +2x+1 .
f (X) = deg top = deg bottom; use long division
x"+5x+4
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f ( JC) =HE= _ 43 deg top < deg bottom; divide each term

X +5x+4 by highest power of x
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As x — +oo (large positive and negative values of x) all tend to zero.

Hence NVA eq" is f(x) = 1 (a horizontal asymptote).

Behaviour
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Let us consider how the curve approaches y = 1.
As x — +o0  f(x) — 17 (below the value of 1, since the fraction will be very small and positive)

Asx — -0 f(x) — 1 (above the value of 1, since the fraction is negative)
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Example 3

X +4x+3 5
f (x ) - “+7 deg top > deg bottom; use long division
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f(JC) =x+2-— e
f (x ) =x+2 - x-}-Z deg t.op < deg bottom; divide each term
by highest power of x
il
f(x) =x+2_ x_T_Z
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Asx — +oo (large positive and negative values of x) all tend to 0.

Hence NVA eq" is f(x) = x + 2 (an oblique asymptote).



Behaviour i

f(x)=x+2_ 1.:2

Let us consider how the curve approaches y =x + 2.
Asx — 40 f(x) — (x+2)
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