Further Differentiation

2013

Q11 – 6 marks

A curve has equation

$$x^2 + 4xy + y^2 + 11 = 0.$$

Find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point (-2, 3).

Expected Answer/s	Max Mark	Additional Guidance
A curve has equation	6	
$x^2 + 4xy + y^2 + 11 = 0$		
Find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point (- 2, 3).		
$2x + 4x\frac{dy}{dx} + 4y \dots$		•¹ Differentiates x² and first product.
$\dots + 2y \frac{dy}{dx} = 0 \qquad (\Delta)$		• Differentiates $y^2 + 11 = 0$ correctly.
$2(-2) + 4(-2)\frac{dy}{dx} + 4(3) + 2(3)\frac{dy}{dx} = 0 : \frac{dy}{dx} = 4$		• ³ Evaluates $\frac{dy}{dx}$.
OR $\frac{dy}{dx} = -\frac{2x+4y}{4x+2y} = -\frac{x+2y}{2x+y}$ (†) $\therefore \frac{dy}{dx} = 4$		• Evaluates $\frac{dy}{dx}$ after rearranging.
Differentiating (Δ): $2 + 4x \frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4\frac{dy}{dx} \dots$		• ⁴ Differentiates first three terms of (Δ) correctly, including a product. ³
$\dots + 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 0$		• 5 Differentiates final product of (Δ) correctly. 3
$\therefore 2 + 4(-2)\frac{d^2y}{dx^2} + 8(4) + 2(3)\frac{d^2y}{dx^2} 2(4)^2 = 0$		
$\therefore \frac{d^2y}{dx^2} = 33$		• Evaluates $\frac{d^2y}{dx^2}$.
OR Differentiating (†):		• Evidence of valid
$\frac{d^{2}y}{dx^{2}} = -\frac{(2x+y)\left(1+2\frac{dy}{dx}\right) - (x+2y)\left(2+\frac{dy}{dx}\right)}{(2x+y)^{2}}$		application of quotient (or product) rule. • Differentiates correctly.
$\frac{d^2y}{dx^2} = -\frac{(2(-2)+3)(1+2(4))-((-2)+2(3))(2+4)}{(2(-2)+3)^2} = 33$		• Evaluates $\frac{d^2y}{dx^2}$. 1,4

Q13 – 10 marks

A curve is defined parametrically, for all t, by the equations

$$x = 2t + \frac{1}{2}t^2$$
, $y = \frac{1}{3}t^3 - 3t$.

Obtain
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ as functions of t.

Find the values of t at which the curve has stationary points and determine their nature.

Show that the curve has exactly two points of inflexion.

TVIGITATING TITSET GOLIOTIS	
	Marks awarded for
$x = 2t + \frac{1}{2}t^{2} \implies \frac{dx}{dt} = 2 + t$ $y = \frac{1}{3}t^{3} - 3t \implies \frac{dy}{dt} = t^{2} - 3$ $\frac{dy}{dx} = \frac{t^{2} - 3}{2 + t}$ $\frac{d}{dt} \left(\frac{dy}{dx}\right) = \frac{2t(2 + t) - (t^{2} - 3)}{(2 + t)^{2}} = \frac{t^{2} + 4t + 3}{(2 + t)^{2}}$ $\frac{d^{2}y}{dx^{2}} = \frac{t^{2} + 4t + 3}{(2 + t)^{2}} \times \frac{1}{2 + t} = \frac{t^{2} + 4t + 3}{(2 + t)^{3}}$ Stationary points when $\frac{dy}{dx} = 0$, i.e.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$t^2 - 3 = 0 \implies t = \pm \sqrt{3}$	1
When $t = \sqrt{3}$, $\frac{d^2y}{dx^2} = \frac{3 + 4\sqrt{3} + 3}{(2 + \sqrt{3})^3} > 0$ which gives a minimum.	no marks for using a nature table
When $t = -\sqrt{3}$, $\frac{d^2y}{dx^2} = \frac{3 - 4\sqrt{3} + 3}{(2 - \sqrt{3})^3} < 0$ which gives a maximum.	no marks for using a nature table
At a point of inflexion, $\frac{d^2y}{dx^2} = 0$. In this case, that means	1
$t^2 + 4t + 3 = (t + 1)(t + 3) = 0$ and this has exactly two roots. Note that this is a slimmed-down version of the complete story of points of inflexion.	1 need to show 2 values exist

Q3a – 3 marks

Obtain $\frac{dy}{dx}$ when y is defined as a function of x by the equation

$$y + e^y = x^2.$$

Q7 - 4 marks

A curve is defined by the equation $y = \frac{e^{\sin x}(2+x)^3}{\sqrt{1-x}}$ for x < 1.

Calculate the gradient of the curve when x = 0.

$$\begin{aligned} & \text{Method } 1 \\ & y = \frac{e^{\sin x}(2+x)^3}{\sqrt{1-x}} \\ & \Rightarrow & \ln y = \ln(e^{\sin x}(2+x)^3) - \ln(\sqrt{1-x}) & \text{1M} \\ & = \sin x + 3 \ln(2+x) - \frac{1}{2} \ln(1-x) & \text{1} \\ & \Rightarrow \frac{1}{y} \frac{dy}{dx} = \cos x + \frac{3}{2+x} + \frac{1}{2(1-x)} & \text{1} \\ & \frac{dy}{dx} = y\left(\cos x + \frac{3}{2+x} + \frac{1}{2(1-x)}\right) & \text{When } x = 0, y = 8 \Rightarrow \\ & \text{gradient} = 8\left(1 + \frac{3}{2} + \frac{1}{2}\right) = 24. & \text{1} & \text{for final value} \end{aligned}$$

$$\begin{aligned} & \text{Method } 2 \\ & y = \frac{e^{\sin x}(2+x)^3}{\sqrt{1-x}} & \Rightarrow \frac{dy}{dx} = \\ & \frac{d}{dx}(e^{\sin x}(2+x)^3)\sqrt{1-x} - e^{\sin x}(2+x)^3(-\frac{1}{2\sqrt{1-x}})} \\ & & \frac{(1-x)}{(1-x)^{3/2}} & \text{M1} \\ & = \frac{\left[\cos x e^{\sin x}(2+x)^3 + 3e^{\sin x}(2+x)^2\right](1-x)}{(1-x)^{3/2}} & \text{M1} \\ & + \frac{e^{\sin x}(2+x)^3}{2(1-x)^{3/2}} & \text{1} \\ & \text{When } x = 0, \\ & \text{gradient} = \frac{(2^3+3\times2^2)}{1} + \frac{2^3}{2} = 20 + 4 = 24 & \text{1} \\ & \frac{\text{Method } 3}{\sqrt{1-x}} & y\sqrt{1-x} = e^{\sin x}(2+x)^3 + 3e^{\sin x}(2+x)^2 & \text{1,1} \\ & \text{when } x = 0, y = \frac{e^02^3}{1} = 8. & \text{This leads to} \end{aligned}$$

Q13 - 10 marks

Given $y = t^3 - \frac{5}{2}t^2$ and $x = \sqrt{t}$ for t > 0, use parametric differentiation to express $\frac{dy}{dx}$ in terms of t in simplified form.

Show that $\frac{d^2y}{dx^2} = at^2 + bt$, determining the values of the constants a and b.

Obtain an equation for the tangent to the curve which passes through the point of inflexion.

From thing first dections

$$y = t^3 - \frac{5}{2}t^2 \Rightarrow \frac{dy}{dt} = 3t^2 - 5t \qquad 1$$

$$x = \sqrt{t} = t^{1/2} \Rightarrow \frac{dx}{dt} = \frac{1}{2}t^{-1/2} \qquad 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{3t^2 - 5t}{\frac{1}{2}t^{-1/2}} \qquad 1$$

$$= 6t^{5/2} - 10t^{3/2} \qquad 1$$
for eliminating fractions

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} \qquad 1M$$

$$= \frac{6 \times \frac{5}{2}t^{3/2} - 10 \times \frac{3}{2}t^{1/2}}{\frac{1}{2}t^{-1/2}} \qquad 1$$

$$= 30t^2 - 30t \qquad 1$$
i.e. $a = 30$, $b = -30$

At a point of inflexion, $\frac{d^2y}{dx^2} = 0 \Rightarrow t = 0$ or 1
But $t > 0 \Rightarrow t = 1 \Rightarrow \frac{dy}{dx} = -4 \qquad 1$
and the point of contact is $(1, -\frac{3}{2}) \qquad 1$
Hence the tangent is
$$y + \frac{3}{2} = -4(x - 1) \qquad 1$$
i.e. $2y + 8x = 5$

Q1b - 4 marks

- Given $f(x) = (x + 1)(x 2)^3$, obtain the values of x for which f'(x) = 0.
- Calculate the gradient of the curve defined by $\frac{x^2}{v} + x = y 5$ at the point (b)

Marking Instructions

(a)
$$f(x) = (x+1)(x-2)^{3}$$

$$f'(x) = (x-2)^{3} + 3(x+1)(x-2)^{2}$$

$$= (x-2)^{2}((x-2) + 3(x+1))$$

$$= (x-2)^{2}(4x+1)$$

$$= 0 \text{ when } x = 2 \text{ and when } x = -\frac{1}{4}.$$

(b) Method 1

Method 1
$$\frac{x^2}{y} + x = y - 5 \Rightarrow x^2 + xy = y^2 - 5y$$

$$2x + x\frac{dy}{dx} + y = 2y\frac{dy}{dx} - 5\frac{dy}{dx}$$

$$6 + 3\frac{dy}{dx} - 1 = -2\frac{dy}{dx} - 5\frac{dy}{dx}$$

$$5 = -10\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{-1}{2}$$
Note: a candidate may obtain $\frac{dy}{dx} = \frac{2x + y}{2y - x - 5}$ and then substitute.

Method 2
$$\frac{x^2}{y} + x = y - 5$$

$$\frac{2xy - x^2 \frac{dy}{dx}}{y^2} + 1 = \frac{dy}{dx}$$

$$\frac{-6 - 9\frac{dy}{dx}}{1} + 1 = \frac{dy}{dx}$$

$$-6 - 9\frac{dy}{dx} + 1 = \frac{dy}{dx}$$

$$\frac{dy}{dx} = -\frac{1}{2}$$
2E1

$$\frac{dy}{dx} = -\frac{1}{2}$$

Mathod 3
$$\frac{x^2}{y} + x = y - 5 \Rightarrow x^2 \left(\frac{1}{y}\right) + x = y - 5$$

 $2x\frac{1}{y} + x^2 \left(-\frac{1}{y^2}\right) \frac{dy}{dx} + 1 = \frac{dy}{dx}$

$$-6 - 9\frac{dy}{dt} + 1 = \frac{dy}{dt} \Rightarrow \frac{dy}{dt} = -\frac{1}{2}$$
 2E1

2E1

 $-6 - 9\frac{dy}{dx} + 1 = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = -\frac{1}{2}$ Note: a candidate may obtain $\frac{dy}{dx} = \frac{2xy + y^2}{y^2 + x^2}$ (in 2 and 3) and then substitute.

Q11 – 5 marks

The curve $y = x^{2x^2 + 1}$ is defined for x > 0. Obtain the values of y and $\frac{dy}{dx}$ at the point where x = 1.

Marking Instructions

When
$$x = 1, y = 1$$
.
 $y = x^{2x^2 + 1}$
 $\Rightarrow \ln y = \ln(x^{2x^2 + 1})$
 $= (2x^2 + 1) \ln x$
 $\frac{1}{y} \frac{dy}{dx} = \frac{2x^2 + 1}{x} + 4x \ln x$
1,1
Hence, when $x = 1, y = 1$ and
 $\frac{dy}{dx} = 3 + 0 = 3$.

2008

Q2b - 3 marks

- (a) Differentiate $f(x) = \cos^{-1}(3x)$ where $-\frac{1}{3} < x < \frac{1}{3}$.
- (b) Given $x = 2 \sec \theta$, $y = 3 \sin \theta$, use parametric differentiation to find $\frac{dy}{dx}$ in terms of θ .

(a)
$$f(x) = \cos^{-1}(3x)$$

$$f'(x) = \frac{-1}{\sqrt{1 - (3x)^2}} \times 3$$

$$= \frac{-3}{\sqrt{1 - 9x^2}}$$
(b)
$$\frac{dx}{d\theta} = 2 \sec \theta \tan \theta, \quad \frac{dy}{d\theta} = 3 \cos \theta$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{d\theta}} = \frac{3 \cos \theta}{2 \sec \theta \tan \theta}$$

$$= \frac{3 \cos^3 \theta}{2 \sin \theta}$$

Q5 – 6 marks

A curve is defined by the equation $xy^2 + 3x^2y = 4$ for x > 0 and y > 0.

Use implicit differentiation to find $\frac{dy}{dx}$.

Hence find an equation of the tangent to the curve where x = 1.

Marking Instructions

$$xy^{2} + 3x^{2}y = 4$$

$$y^{2} + 2xy\frac{dy}{dx} + 6xy + 3x^{2}\frac{dy}{dx} = 0$$

$$(2xy + 3x^{2})\frac{dy}{dx} = -y^{2} - 6xy$$

$$\frac{dy}{dx} = \frac{-y^{2} - 6xy}{2xy + 3x^{2}}$$
1

When x = 1,

$$y^{2} + 3y = 4 \Rightarrow y^{2} + 3y - 4 = 0 \Rightarrow (y + 4)(y - 1) = 0$$

 $\Rightarrow y = 1 \text{ since } y > 0$

Hence at (1, 1)

$$\frac{dy}{dx} = \frac{-7}{5}$$

Tangent is

$$(y-1) = -\frac{7}{5}(x-1)$$

5y + 7x = 12.

Alternative for the first 3 marks.

3 marks.

$$xy^{2} + 3x^{2}y = 4$$

$$y^{2} + 3xy = \frac{4}{x}$$

$$2y\frac{dy}{dx} + 3y + 3x\frac{dy}{dy} = -\frac{4}{x^{2}}$$

$$(2y + 3x)\frac{dy}{dx} = -\frac{4}{x^{2}} - 3y$$

$$\frac{dy}{dx} = \frac{-\frac{4}{x^{2}} - 3y}{2y + 3x}$$
1

Q2b – 3 marks

Obtain the derivative of each of the following functions:

(a)
$$f(x) = \exp(\sin 2x)$$
;

(b)
$$y = 4^{(x^2 + 1)}$$
.

Marking Instructions

(a)
$$f(x) = \exp(\sin 2x)$$
$$f'(x) = 2\cos 2x \exp(\sin 2x)$$
 M1,2E1

(b)
$$y = 4^{(x^2+1)}$$

$$\ln y = \ln(4^{(x^2+1)}) = (x^2+1)\ln 4$$

$$\frac{1}{y}\frac{dy}{dx} = 2x\ln 4$$

$$\frac{dy}{dx} = 2x\ln 4 \cdot 4^{(x^2+1)}$$
1

Alternative:

$$y = 4^{(x^2+1)}$$

$$4 = e^{\ln 4}$$

$$y = e^{\ln 4(x^2+1)}$$

$$\frac{dy}{dx} = \ln 4 2x e^{\ln 4(x^2+1)}$$
1,1