Matrices

2013

Q3 – 5 marks

Matrices A and B are defined by $A = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix}$.

(a) Find A^2 .

1

(b) Find the value of p for which A^2 is singular.

2

(c) Find the values of p and x if B = 3A'.

2

	2.5	11111 16.11
Expected Answer/s	Max Mark	Additional Guidance
Matrices A and B are defined by $A = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix}$		
and $B = \begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix}$		
(a) Find A^2 .	1	
(b) Find the value of p for which A^2 is singular.	2	
(c) Find the values of p and x if $B = 3.4$.	2	
$A^{2} = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 16 - 2p & 4p + p \\ -8 - 2 & -2p + 1 \end{pmatrix}$		•¹ Correct answer. ^{3,1}
$= \begin{pmatrix} 16 - 2p & 5p \\ -10 & 1 - 2p \end{pmatrix}$		Improved alternative.

A^2 is singular when $\det A^2 = 0$ (16 - 2p)(1 - 2p) + 50p = 0 $16 - 34p + 4p^2 + 50p = 0$ $4p^2 + 16p + 16 = 0$	•² Property stated or implied. ⁴
$4(p+2)^2 = 0$ $p = -2$ OR	•³ Correct value of p. 5,1
A^2 is singular when A is singular, [i.e. when detA = 0]	• Explicitly states property. [not essential, but preferred]
4 + 2p = 0 $p = -2$	• Correct value of p ¹
$A' = \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix}$ $\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = 3 \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix}$	A transpose (A ^T) correct. Does not have to be explicitly stated.
$\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 12 & -6 \\ 3p & 3 \end{pmatrix} \qquad x = 12, p = \frac{1}{3}$	• Values of p and x correct. 1,2

Q9 – 4 marks

A non-singular $n \times n$ matrix A satisfies the equation $A + A^{-1} = I$, where I is the $n \times n$ identity matrix. Show that $A^3 = kI$ and state the value of k.

Q14 - 9 marks

(a) Use Gaussian elimination to obtain the solution of the following system of equations in terms of the parameter λ .

$$4x + 6z = 1$$
$$2x - 2y + 4z = -1$$
$$-x + y + \lambda z = 2$$

(b) Describe what happens when $\lambda = -2$.

(c) When $\lambda = -1.9$ the solution is x = -22.25, y = 8.25, z = 15. Find the solution when $\lambda = -2.1$.

Comment on these solutions.

Marking Instructions

(a)
$$\begin{vmatrix} 4 & 0 & 6 & 1 \\ 2 & -2 & 4 & -1 \\ -1 & 1 & \lambda & 2 \end{vmatrix}$$
$$\begin{vmatrix} 4 & 0 & 6 & 1 \\ 0 & 4 & -2 & 3 \\ 0 & 4 & 6 + 4\lambda & 9 \end{vmatrix}$$
$$\begin{vmatrix} 4 & 0 & 6 & 1 \\ 0 & 4 & -2 & 3 \\ 0 & 0 & 8 + 4\lambda & 6 \end{vmatrix}$$
$$z = \frac{6}{8 + 4\lambda} = \frac{3}{2(2 + \lambda)}$$
$$4y = 3 + 2z \Rightarrow 4y = \frac{18 + 6\lambda}{4 + 2\lambda}$$
$$\Rightarrow y = \frac{3\lambda + 9}{4(2 + \lambda)}$$
$$4x = 1 - 6z \Rightarrow 4x = \frac{2\lambda - 14}{4 + 2\lambda}$$
$$\Rightarrow x = \frac{\lambda - 7}{4(2 + \lambda)}$$

for augmented matrix

5

1

2

1

triangular form needed

first root

other two roots

1

(b) When $\lambda = -2$, the final row gives 0 = 6

which is inconsistent. There are no solutions.

(c) $\lambda = -2.1$; x = 22.75; y = -6.75; z = -15

Although the values of λ are close, the values of x, y and z are quite different. The system is **ill-conditioned** near $\lambda = -2$.

1,1 1 for first 2 values; 1 for third

Q4 – 6 marks

- (a) For what value of λ is $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ -1 & \lambda & 6 \end{pmatrix}$ singular?
- (b) For $A = \begin{pmatrix} 2 & 2\alpha \beta & -1 \\ 3\alpha + 2\beta & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}$, obtain values of α and β such that

$$A' = \begin{pmatrix} 2 & -5 & -1 \\ -1 & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}.$$

Marking Instructions

(a) Singular when the determinant is 0. $1 \det \begin{pmatrix} 0 & 2 \\ \lambda & 6 \end{pmatrix} - 2 \det \begin{pmatrix} 3 & 2 \\ -1 & 6 \end{pmatrix} + (-1) \det \begin{pmatrix} 3 & 0 \\ -1 & \lambda \end{pmatrix} = 0 \text{ M1}$ $-2\lambda - 2 (18 + 2) - 1 (3\lambda - 0) = 0 \qquad 1$ $-5\lambda - 40 = 0 \text{ when } \lambda = -8 \qquad 1$ (b) From $A, A' = \begin{pmatrix} 2 & 3\alpha + 2\beta - 1 \\ 2\alpha - \beta & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}$. I for transpose Hence $2\alpha - \beta = -1$ and $3\alpha + 2\beta = -5$. 1 $4\alpha - 2\beta = -2$ $3\alpha + 2\beta = -5$ $7\alpha = -7 \Rightarrow \alpha = -1 \text{ and } \beta = -1$. I for both values

2010

Q4 - 4 marks

Obtain the 2 \times 2 matrix M associated with an enlargement, scale factor 2, followed by a clockwise rotation of 60 ° about the origin.

The matrix
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 gives an enlargement, scale factor 2.

The matrix $\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{5}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$ gives a clockwise 1 correct matrix rotation of 60° about the origin.

$$M = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{5}}{2} \\ -\frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 1 correct order
$$= \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$
.

Q14 - 10 marks

Use Gaussian elimination to show that the set of equations

$$x - y + z = 1$$

$$x + y + 2z = 0$$

$$2x - y + az = 2$$

has a unique solution when $a \neq 2.5$.

Explain what happens when a = 2.5.

Obtain the solution when a = 3.

Given $A = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 1 & -1 \\ -3 & -1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, calculate AB.

Hence, or otherwise, state the relationship between A and the matrix

$$C = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 3 \end{pmatrix}.$$

5

1

Marking Instructions

1

 $z = \frac{1}{2a - 5}$; one correct variable

 $2y + \frac{1}{2a - 5} = -1 \implies 2y = \frac{-2a + 5 - 1}{2a - 5}$ $\implies y = \frac{2 - a}{2a - 5};$

 $x - \frac{2-a}{2a-5} + \frac{1}{2a-5} = 1$ $\Rightarrow x = \frac{2a-5}{2a-5} + \frac{1-a}{2a-5} = \frac{a-4}{2a-5}.$ 1 for the two

for the two other variables {other justifications for uniqueness are possible}

which exist when $2a - 5 \neq 0$.

From the third row of the final tableau, when a = 2.5, there are no solutions

When a = 3, x = -1, y = -1, z = 1.

 $AB = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 1 & -1 \\ -3 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ **1**

From above, we have $C \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ and

also $A \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ which suggests AC = I and

this can be verified directly. Hence A is the inverse of C (or vice versa).

A candidate who obtains AC = I directly may be awarded full marks.

Q2 – 5 marks

Given the matrix $A = \begin{pmatrix} t+4 & 3t \\ 3 & 5 \end{pmatrix}$.

(a) Find A^{-1} in terms of t when A is non-singular.

3 1

Write down the value of t such that A is singular.

1

Given that the transpose of A is $\begin{pmatrix} 6 & 3 \\ 6 & 5 \end{pmatrix}$, find t.

Marking Instructions

(a)
$$\det \begin{pmatrix} t + 4 & 3t \\ 3 & 5 \end{pmatrix} = 5(t + 4) - 9t$$

$$A^{-1} = \frac{1}{20 - 4t} \begin{pmatrix} 5 & -3t \\ -3 & t + 4 \end{pmatrix}$$

(b)
$$20 - 4t = 0 \implies t = 5$$

(c)
$$\begin{pmatrix} t + 4 & 3 \\ 3t & 5 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ 6 & 5 \end{pmatrix} \Rightarrow t = 2$$
 1

2009

Q16(a) - 5 marks

Use Gaussian elimination to solve the following system of equations

$$x+y-z=6$$
$$2x-3y+2z=2$$
$$-5x+2y-4z=1.$$

Marking Instructions

$$x + y - z = 6$$
$$2x - 3y + 2z = 2$$

1,1,1

$$z = 17 \div \left(\frac{-17}{5}\right) = -5$$

 $-5y - 20 = -10 \Rightarrow y = -2$

 $x - 2 + 5 = 6 \Rightarrow x = 3$

Q6 – 5 marks

Let the matrix $A = \begin{pmatrix} 1 & x \\ x & 4 \end{pmatrix}$.

- (a) Obtain the value(s) of x for which A is singular.
- When x = 2, show that $A^2 = pA$ for some constant p. Determine the value of q such that $A^4 = qA$.

Marking Instructions

$$\det\begin{pmatrix} 1 & x \\ y & 4 \end{pmatrix} = 4 - x^2$$

 $\det\begin{pmatrix}1&x\\x&4\end{pmatrix}=4-x^2$ A matrix is singular when its determinant is 0, hence $x=\pm 2$.

(b) When
$$x = 2, A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 10 & 20 \end{pmatrix} = 5A.$$
 1

$$A^4 = (A^2)^2 = (5A)^2 = 25A^2 = 125A.$$
 2E1

 $A^{4} = (A^{2})^{2} = (5A)^{2} = 25A^{2} = 125A.$ Evaluating $A^{4} = \begin{pmatrix} 125 & 250 \\ 250 & 500 \end{pmatrix} = 125A$ was accepted.

Q5 - 5 marks

Matrices A and B are defined by

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}.$$

- (a) Find the product AB.
- (b) Obtain the determinants of A and of AB. Hence, or otherwise, obtain an expression for det B.

Marking Instructions

(a)
$$AB = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} x & x & x \\ -6 & 6 & -1 \\ 0 & 0 & 8 \end{pmatrix}$$
 2E1

(b)
$$\det A = 1 \times (2 + 1) - 0 - 1 \times 0 = 3$$
$$\det AB = x(48 - 0) - x(-48 - 0) + x(0 - 0) = 96x$$

Since
$$\det AB = \det A \det B$$

$$\det B = \frac{\det AB}{\det A} = \frac{96x}{3} = 32x$$

2005

Q6 – 6 marks

Use Gaussian elimination to solve the system of equations below when $\lambda \neq 2$:

$$x + y + 2z = 1$$

 $2x + \lambda y + z = 0$
 $3x + 3y + 9z = 5$.

Explain what happens when $\lambda = 2$.

Marking Instructions

$$\begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 2 & \lambda & 1 & | & 0 \\ 3 & 3 & 9 & | & 5 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 0 & \lambda - 2 & -3 & | & -2 \\ 0 & 0 & 3 & | & 2 \end{pmatrix}$$

$$z = \frac{2}{3};$$

$$(\lambda - 2)y - 2 = -2 \Rightarrow y = 0; x = 1 - 0 - \frac{4}{3} = -\frac{1}{3}.$$

$$1$$

When $\lambda=2$, the second and third rows of the second matrix are the same, so there is an infinite number of solutions.

(†) Use of 'redundant' is worth a mark.

Interpretation in geometrical terms can be given both the marks.

Q7 - 6 marks

Given the matrix
$$A = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$$
, show that $A^2 + A = kI$ for some

constant k, where I is the 3×3 unit matrix.

Obtain the values of p and q for which $A^{-1} = pA + qI$.

Marking Instructions

$$A = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} 2 & -4 & -2 \\ -1 & 2 & -1 \\ 1 & 2 & 5 \end{pmatrix}$$
 2E1

$$A^2 + A = \begin{pmatrix} 2 & -4 & -2 \\ -1 & 2 & -1 \\ 1 & 2 & 5 \end{pmatrix} + \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$$
 1

$$= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I$$
 1

$$A^{-1}(A^2 + A) = 2A^{-1}$$
 1

$$2A^{-1} = A + I$$

$$A^{-1} = \frac{1}{2}A + \frac{1}{2}I$$
 1

2004

Q6 - 5 marks

Write down the 2 × 2 matrix M_1 associated with an anti-clockwise rotation of $\frac{\pi}{2}$ radians about the origin.

Write down the matrix M_2 associated with reflection in the x-axis.

Evaluate M_2M_1 and describe geometrically the effect of the transformation represented by M_2M_1 .

Marking Instructions

$$M_1 = \begin{pmatrix} \cos\frac{\pi}{2} - \sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$M_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$M_2M_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

The transformation represented by M_2M_1 is reflection in y = -x.

A6 – 6 marks

Use elementary row operations to reduce the following system of equations to upper triangular form

$$x + y + 3z = 1$$

 $3x + ay + z = 1$
 $x + y + z = -1$

Hence express x, y and z in terms of the parameter a.

Explain what happens when a = 3.

Marking Instructions

$$x + y + 3z = 1$$
$$3x + ay + z = 1$$
$$x + y + z = -1.$$

Hence

$$x + y + 3z = 1$$

$$(a - 3)y - 8z = -2$$

When $a \neq 3$, we can solve to give a unique solution.

$$z = 1;$$
 $y = \frac{6}{a - 3};$ $x = -2 + \frac{6}{3 - a}.$ **2E1**

2†

When a=3, we get $z=\frac{1}{4}$ from the second equation but $z=1^{\ddagger}$ from the third, i.e. inconsistent§ .

2002

A1 - 5 marks

Use Gaussian elimination to solve the following system of equations

$$x + y + 3z = 2$$

 $2x + y + z = 2$
 $3x + 2y + 5z = 5$.

Marking Instructions

Second row 1 mark Third row 1 mark

Third row 1 mark

Values 2E1. (available whatever method used above)

B4 – 4 marks

Write down the 2×2 matrix A representing a reflection in the x-axis and the 2×2 matrix B representing an anti-clockwise rotation of 30° about the origin.

Hence show that the image of a point (x, y) under the transformation A followed

by the transformation B is $\left(\frac{kx+y}{2}, \frac{x-ky}{2}\right)$, stating the value of k.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$B = \begin{pmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}$$

$$BA \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{3}x + y \\ x - \sqrt{3}y \end{pmatrix}$$

$$i.e.(x, y) \rightarrow \frac{1}{2}(\sqrt{3}x + y, x - \sqrt{3}y)$$
so $k = \sqrt{3}$.

1 for A
1 for B
1 method for tackling a composition
$$1 \text{ 1 for } A$$
1 for B
1 method for tackling a composition