Proofs

2013

Q9 - 6 marks

Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \left(4r^3 + 3r^2 + r \right) = n(n+1)^3$$

Marking Instructions

Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} (4r^3 + 3r^2 + r) = n (n+1)^3.$$
For $n = 1$
L.H.S
$$\sum_{r=1}^{n} (4r^3 + 3r^2 + r)$$

$$= 4 + 3 + 1 = 8$$

$$\Rightarrow \text{true for } n = 1$$

Assume true for n = k,

$$\sum_{r=1}^{k} (4r^3 + 3r^2 + r) = k(k+1)^3$$
Consider $n = k+1$,

$$\sum_{r=1}^{k+1} \left(4r^3 + 3r^2 + r \right)$$

$$= \sum_{r=1}^{k} (4r^3 + 3r^2 + r) + 4(k+1)^3 + 3(k+1)^2 + (k+1)$$

$$= k(k+1)^3 + 4(k+1)^3 + 3(k+1)^2 + (k+1)$$

$$= (k+1) [k(k+1)^2 + 4(k+1)^2 + 3(k+1) + 1]$$

$$= (k+1) [k(k^2 + 2k+1) + 4(k^2 + 2k+1) + 3(k+1) + 1]$$

$$= (k+1) [k^3 + 2k^2 + k + 4k^2 + 8k + 4 + 3k + 3 + 1]$$

$$= (k+1) (k^3 + 6k^2 + 12k + 8)$$

$$= (k+1)(k+2)^3$$

$$= (k+1)((k+1) + 1)^3$$

Hence, if true for n = k, then true for n = k + 1, but since true for n = 1, then by induction true for all positive integers n.

6

Evaluation of both sides independently to 8.8

•2 Inductive hypothesis (must include "Assume true..." or equivalent phrase).^{3,4}

• Addition of (k+1)th term.

Use of inductive hypothesis and first step in factorisation process. 1,6

Processing and simplifying to arrive at second factor.

Statement of result in terms of (k+1) and valid statement of conclusion.^{1,7}

Q12 - 4 marks

Let n be a natural number.

For each of the following statements, decide whether it is true or false.

If true, give a proof; if false, give a counterexample.

- A If n is a multiple of 9 then so is n^2 .
- **B** If n^2 is a multiple of 9 then so is n.

Marking Instructions

Let n be a natural number. For each of the following statements, decide whether it is true or false. If true, give a proof, if false, give a counterexample. If n is a multiple of 9 then so is n^2 . If n^2 is a multiple of 9 then so is n. В Suppose n = 9m for some natural number [positive integer], m. \mathbf{A} Generalisation, using different letter.3, Correct multiplication and Then $n^2 = 81m^2 = 9(9m^2)$ 9 extracted as a factor. Hence n^2 is a multiple of 9, so **A** is **true**. Conclusion of proof and state A true.1 **False.** Accept any valid counterexample: n = 3, 6, 12, 15, 21 etc В Valid counterexample and 4

Q16a – 6 marks

(a) Prove by induction that

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

for all integers $n \ge 1$.

6

Marking Instructions

(a) For n=1, the LHS = $\cos\theta+i\sin\theta$ and the RHS = $\cos\theta+i\sin\theta$. Hence the result is true for n=1.

Assume the result is true for n=k, i.e. $(\cos\theta+i\sin\theta)^k=\cos k\theta+i\sin k\theta$.

Now consider the case when n=k+1: $(\cos\theta+i\sin\theta)^{k+1}=(\cos\theta+i\sin\theta)^k(\cos\theta+i\sin\theta)$ $=(\cos k\theta+i\sin\theta)^{k+1}=(\cos\theta+i\sin\theta)^k(\cos\theta+i\sin\theta)$ $=(\cos k\theta+i\sin\theta)^{k+1}=(\cos\theta+i\sin\theta)^k(\cos\theta+i\sin\theta)$ $=(\cos k\theta\cos\theta-\sin k\theta\sin\theta)+i(\sin k\theta\cos\theta+\cos k\theta\sin\theta)$ $=\cos(k+1)\theta+i\sin(k+1)\theta$ Thus, if the result is true for n=k the result is true for n=k+1.
Since it is true for n=1, the result is true for n=1, the result is true for all $n\geqslant 1$.

Q12 – 5 marks

Prove by induction that $8^n + 3^{n-2}$ is divisible by 5 for all integers $n \ge 2$.

5

```
For n = 2, 8^2 + 3^0 = 64 + 1 = 65.

True when n = 2.

Assume true for k, i.e. that 8^k + 3^{k-2} is divisible by 5, i.e. can be expressed as 5p for an integer p.

Now consider 8^{k+1} + 3^{k-1}
= 8 \times 8^k + 3^{k-1}
= 8 \times (5p - 3^{k-2}) + 3^{k-1}
= 40p - 3^{k-2}(8 - 3)
= 5(8p - 3^{k-2}) which is divisible by 5.

So, since it is true for n = 2, it is true for all n \ge 2.
```

Q16b – 5 marks

Define $I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$ for $n \ge 1$.

(a) Use integration by parts to show that

$$I_n = \frac{1}{2^n} + 2n \int_0^1 \frac{x^2}{(1+x^2)^{n+1}} dx.$$

(b) Find the values of A and B for which

$$\frac{A}{(1+x^2)^n} + \frac{B}{(1+x^2)^{n+1}} = \frac{x^2}{(1+x^2)^{n+1}}$$

and hence show that

$$I_{n+1} = \frac{1}{n \times 2^{n+1}} + \left(\frac{2n-1}{2n}\right) I_n.$$

(c) Hence obtain the exact value of $\int_0^1 \frac{1}{(1+x^2)^3} dx$.

Marking Instructions

$$\begin{aligned} &\text{(a)}\ \ I_n = \int_0^1 \frac{1}{(1+x^2)^n} \, dx \\ &= \int_0^1 1 \times (1+x^2)^{-n} \, dx \\ &= \left[(1+x^2)^{-n} \right] 1 \, dx \right]_0^1 + \int_0^1 \left(2nx(1+x^2)^{-n-1} \right) 1 \, dx \right) \, dx \quad \mathbf{1} \\ &= \left[x(1+x^2)^{-n} \right]_0^1 + \int_0^1 2nx^2 (1+x^2)^{-n-1} \, dx \quad \mathbf{1} \\ &= \frac{1}{2^n} - 0 + 2n \int_0^1 x^2 (1+x^2)^{-n-1} \, dx \quad \mathbf{1} \\ &= \frac{1}{2^n} + 2n \int_0^1 \frac{x^2}{(1+x^2)^{n+1}} \, dx. \end{aligned}$$

for showing that 1 is integrated

3

(b)
$$\frac{A}{(1+x^2)^n} + \frac{B}{(1+x^2)^{n+1}} = \frac{x^2}{(1+x^2)^{n+1}}$$

$$\Rightarrow A(1+x^2) + B = x^2 \qquad 1$$

$$\Rightarrow A = 1, B = -1 \qquad 1$$

$$\frac{1}{(1+x^2)^n} + \frac{-1}{(1+x^2)^{n+1}} = \frac{x^2}{(1+x^2)^{n+1}} \text{ (*)}$$

$$I_n = \frac{1}{2^n} + 2n \int_0^1 \frac{x^2}{(1+x^2)^{n+1}} dx.$$

$$= \frac{1}{2^n} + 2n \int_0^1 \frac{1}{(1+x^2)^n} dx + 2n \int_0^1 \frac{-1}{(1+x^2)^{n+1}} dx \text{ 1}$$

$$= \frac{1}{2^n} + 2nI_n - 2nI_{n+1} \qquad 1$$

$$2nI_{n+1} = \frac{1}{2^n} + (2n-1)I_n \qquad 1$$

$$I_{n+1} = \frac{1}{n \times 2^{n+1}} + \left(\frac{2n-1}{2n}\right)I_n.$$

Recognising I_n and I_{n+1}

(c) $\int_{0}^{1} \frac{1}{(1+x^{2})^{3}} dx = I_{3}$ $= \frac{1}{16} + \frac{3}{4}I_{2}$ $= \frac{1}{16} + \frac{3}{4}\left(\frac{1}{4} + \frac{1}{2}I_{1}\right)$ $= \frac{1}{4} + \frac{3}{8}\int_{0}^{1} \frac{1}{1+x^{2}} dx$ $= \frac{1}{4} + \frac{3}{8}\left[\tan^{-1}x\right]_{0}^{1}$ $= \frac{1}{4} + \frac{3\pi}{84} = \frac{1}{4} + \frac{3\pi}{32}.$

$$= \frac{1}{4} + \frac{3}{8} \int_{0}^{1} \frac{1}{1 + x^{2}} dx$$

$$= \frac{1}{4} + \frac{3}{8} \left[\tan^{-1} x \right]_{0}^{1}$$

$$= \frac{1}{4} + \frac{3\pi}{8} \left[\frac{1}{1 + x^{2}} dx \right]_{0}^{1}$$

Q8 – 6 marks

- (a) Prove that the product of two odd integers is odd.
- (b) Let p be an odd integer. Use the result of (a) to prove by induction that p^n is odd for all positive integers n.

2

4

Q12 – 4 marks

Prove by contradiction that if x is an irrational number, then 2 + x is irrational.

4

Assume
$$2 + x$$
 is rational 1 and let $2 + x = \frac{p}{q}$ where p , q are integers. 1

So $x = \frac{p}{q} - 2$
 $= \frac{p - 2q}{q}$ 1 as a single fraction Since $p - 2q$ and q are integers, it follows that x is rational. This is a contradiction. 1

Q4 - 5 marks

Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{1}{r(r+1)} = 1 - \frac{1}{n+1}.$$

When
$$n = 1$$
, LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$, RHS = $1 - \frac{1}{2} = \frac{1}{2}$. So true when $n = 1$.

Assume true for $n = k$, $\sum_{r=1}^{k} \frac{1}{r(r+1)} = 1 - \frac{1}{k+1}$.

1

Consider $n = k+1$

$$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \sum_{r=1}^{k} \frac{1}{r(r+1)} + \frac{1}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= 1 - \frac{k+2-1}{(k+1)(k+2)} = 1 - \frac{k+1}{(k+1)((k+1)+1)}$$
1

Thus, if true for $n = k$, statement is true for $n = k+1$, and, since true for $n = 1$, true for all $n \ge 1$.

Q11 – 5 marks

For each of the following statements, decide whether it is true or false and prove your conclusion.

- A For all natural numbers m, if m^2 is divisible by 4 then m is divisible by 4.
- B The cube of any odd integer p plus the square of any even integer q is always odd.

Marking Instructions

(a)	Counter example $m = 2$.	1,1
	So statement is false.	
(b)	Let the numbers be $2n + 1$ and $2m$ then	1M
	$(2n + 1)^3 + (2m)^2 = 8n^3 + 12n^2 + 6n + 1 + 4m^2$	1
	$= 2(4n^3 + 6n^2 + 3n + 2m^2) + 1$	1
	which is odd.	
	OR	
	Proving algebraically that either the cube of an odd number is odd or the	
	square of an even number is even.	1
	Odd cubed is odd and even squared is even.	1
	So the sum of them is odd.	1

5

Q12 – 5 marks

Prove by induction that for a > 0,

$$(1+a)^n \ge 1 + na$$

for all positive integers n.

Marking Instructions

Consider n = 1, LHS = (1 + a), RHS = 1 + a so true for n = 1.

Assume that $(1 + a)^k \ge 1 + ka$ and consider $(1 + a)^{k+1}$. $(1 + a)^{k+1} = (1 + a)(1 + a)^k$ $\ge (1 + a)(1 + ka)$ $= 1 + a + ka + ka^2$ $= 1 + (k + 1)a + ka^2$ > 1 + (k + 1)a since $ka^2 > 0$

as required. So since true for n=1, by mathematical induction statement is true for all $n\geqslant 1$.

5