Vectors

2013

Q15 - 9 marks

(a) Find an equation of the plane π_1 , through the points A(0, -1, 3), B(1, 0, 3) and

(b) π_2 is the plane through A with normal in the direction $-\mathbf{j} + \mathbf{k}$. Find an equation of the plane π_2 .

2

4

(c) Determine the acute angle between planes π_1 and π_2 .

3

Marking Instructions	
А	$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \qquad \text{OR} \overrightarrow{BC} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & j & k \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{vmatrix}$ or equivalent
	$= 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$
	$2x - 2y + z = 2 \times 0 - 2 \times -1 + 1 \times 3$
	$\pi_1: 2x - 2y + z = 5$
	OR $r = \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or equivalent

- Any two correct vectors
- Evidence of appropriate method.¹
- Obtains vector product (any form).
- Obtains constant and states equation of plane.

- b
- $0 \times 0 + (-1) \times (-1) + 1 \times 3 = 4$ $\pi_2:-y+z=4$
- Evidence of appropriate method.⁴

- Processes to obtain equation of second plane,

- Obtains two correct leugtlis.

- $\frac{n_1 \cdot n_2}{|n_1| |n_2|} = \frac{2 \times 0 2 \times -1 + 1 \times 1}{3\sqrt{2}} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}}$
- Evidence knows how to use formula.

- - acute angle between planes is $45^{\circ} \left(\text{ or } \frac{\pi}{4} \right)$.
- Processes to statement of

- - $= 2\mathbf{i} 2\mathbf{j} + \mathbf{k}. \text{ so } |2\mathbf{i} 2\mathbf{j} + \mathbf{k}| = 3 \text{ and } |-\mathbf{j} + \mathbf{k}| = \sqrt{2}$ $3 = |n_1|, |n_2|, \cos \theta = 3\sqrt{2}.\cos \theta$ $\cos \theta = \frac{1}{\sqrt{2}} \text{ so } \theta = \frac{\pi}{4} \text{ (or } 45^\circ)$
- States vector and obtains
- Evidence knows how to
- Processes to statement of

Q5 - 5 marks

Obtain an equation for the plane passing through the points P(-2, 1, -1), Q(1, 2, 3) and R(3, 0, 1).

5

6

Marking Instructions

Method 2

A plane has an equation of the form

$$ax + by + cz = d$$
. Using the points P , Q , R we get
$$-2a + b - c = d$$

$$a + 2b + 3c = d$$

$$3a + c = d$$
1M

Using Gaussian elimination to solve these we have

i.e. 3x + 7y - 4z = 5

or other valid method

2011

Q15 - 10 marks

The lines L_1 and L_2 are given by the equations

$$\frac{x-1}{k} = \frac{y}{-1} = \frac{z+3}{1}$$
 and $\frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$,

respectively.

Find:

- (a) the value of k for which L_1 and L_2 intersect and the point of intersection;
- (b) the acute angle between L_1 and L_2 .

Marking Instructions

(a) In terms of a parameter
$$s$$
, L_1 is given by $x = 1 + ks$, $x' = -s$, $z = -3 + s$ 1

In terms of a parameter t , L_2 is given by $y' = 4 + t$, $y' = -3 + t$, $z = -3 + 2t$ 1

Equating the y -coordinates and equating the z -coordinates:
$$-5 = -3 + t \\
-3 + s = -3 + 2t$$
Adding these
$$-3 = -6 + 3t \\
\Rightarrow t = 1 \Rightarrow s = 2.$$

From the x -coordinates
$$1 + ks = 4 + t$$
Using the values of s and t

$$1 + 2k = 5 \Rightarrow k = 2$$

The point of intersection is: $(5, -2, -1)$.

(b)
$$L_1$$
 has direction $2\mathbf{i} - \mathbf{j} + \mathbf{k}_1$
 L_2 has direction $\mathbf{i} + \mathbf{j} + 2\mathbf{k}_1$

For both directions.

Let the angle between
$$L_1$$
 and L_2 be θ_4 then $\cos \theta = \frac{(2\mathbf{i} - \mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + 2\mathbf{k})}{|2\mathbf{i} - \mathbf{j} + \mathbf{k}| |\mathbf{i} + \mathbf{j} + 2\mathbf{k}|} = \frac{2 - 1 + 2}{\sqrt{6}\sqrt{6}} = \frac{3}{6} = \frac{1}{2}$

$$\theta = 60^{\circ}$$

The angle between L_1 and L_2 is 60°.

2010

Q6 - 4 marks

Given
$$\mathbf{u} = -2\mathbf{i} + 5\mathbf{k}$$
, $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{w} = -\mathbf{i} + \mathbf{j} + 4\mathbf{k}$.
Calculate $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.

1

1

Marking Instructions

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & -1 \\ -1 & 1 & 4 \end{vmatrix}$$

$$= \mathbf{i} \begin{vmatrix} 2 & -1 \\ 1 & 4 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 3 & -1 \\ -1 & 4 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 3 & 2 \\ -1 & 1 \end{vmatrix}$$

$$= 9\mathbf{i} - 11\mathbf{j} + 5\mathbf{k}$$

$$\mathbf{u}_{*}(\mathbf{v} \times \mathbf{w}) = (-2\mathbf{i} + 0\mathbf{j} + 5\mathbf{k})_{*}(9\mathbf{i} - 11\mathbf{j} + 5\mathbf{k})$$

$$= -18 + 0 + 25$$

$$= 7.$$

$$\mathbf{1}$$
Impure the equation of the equatio

Q16 - 11 marks

(a) Use Gaussian elimination to solve the following system of equations

$$x + y - z = 6$$

$$2x - 3y + 2z = 2$$

$$-5x + 2y - 4z = 1.$$
5

(b) Show that the line of intersection, L, of the planes x + y - z = 6 and 2x - 3y + 2z = 2 has parametric equations

$$x = \lambda$$

$$y = 4\lambda - 14$$

$$z = 5\lambda - 20.$$

(c) Find the acute angle between line L and the plane -5x + 2y - 4z = 1.

Marking Instructions

(a)
$$x + y - z = 6$$

$$2x - 3y + 2z = 2$$

$$-5x + 2y - 4z = 1$$

$$\begin{vmatrix} 1 & 1 & -1 \\ 2 & -3 & 2 \\ -5 & 2 & -4 \end{vmatrix} \begin{vmatrix} 6 & 1 & 1 & -1 \\ 2 \Rightarrow 0 & -5 & 4 \\ 1 & 0 & 7 & -9 \end{vmatrix} \begin{vmatrix} 6 & 1 & 1 & -1 \\ -10 \Rightarrow 0 & -5 & 4 \\ 31 & 0 & 0 & -\frac{17}{5} \end{vmatrix} \begin{vmatrix} 6 & -10 \\ 17 \end{vmatrix}$$

$$z = 17 + \left(\frac{-17}{5}\right) = -5$$

$$1$$

$$-5y - 20 = -10 \Rightarrow y = -2$$

$$x - 2 + 5 = 6 \Rightarrow x = 3$$

(b) Let $x = \lambda$.

Method 1

In first plane: x + y - z = 6. $\lambda + (4\lambda - 14) - (5\lambda - 20) = 5\lambda - 5\lambda + 6 = 6$.

In the second plane: $2x - 3y + 2z = 2\lambda - 3(4\lambda - 14) + 2(5\lambda - 20) = 5\lambda - 5\lambda + 2 = 2$.

Method 2

$$y-z=6-\lambda \Rightarrow y=6+z-\lambda$$

$$-3y+2z=2-2\lambda$$

$$(-18-3z+3\lambda)+2z=2-2\lambda$$

$$-z=20-5\lambda \Rightarrow z=5\lambda-20$$
and $y=4\lambda-14$

Method 2

$$\begin{array}{rcl}
 x + y - z & = & 6 & (1) \\
 2x - 3y + 2z & = & 2 & (2) \\
 5x - z & = & 20 & (2) + 3(1) \\
 4x - y & = & 14 & (2) + 2(1)
 \end{array}$$

$$\begin{array}{rcl}
 y & = 4x - 14 \\
 z & = 5x - 20
 \end{array}$$

 $x = \lambda$, $y = 4\lambda - 14$, $z = 5\lambda - 20$

(c) Direction of L is 1+4j+5k, direction of normal to the plane is -5l+2j-4k. Letting θ be the angle between these then

$$\cos \theta = \frac{-5 + 8 - 20}{\sqrt{42}\sqrt{45}}$$

$$= \frac{-17}{3\sqrt{210}}$$
1M,1

This gives a value of 113.0° which leads to the angle $113.0^{\circ} - 90^{\circ} = 23.0^{\circ}$.

1

Q14 - 10 marks

(a) Find an equation of the plane π_1 through the points A(1, 1, 1), B(2, -1, 1) and C(0, 3, 3).

3

(b) The plane π_2 has equation x + 3y - z = 2. Given that the point (0, a, b) lies on both the planes π_1 and π_2 , find the values of a and b. Hence find an equation of the line of intersection of the planes π_1 and π_2 .

4

(c) Find the size of the acute angle between the planes π_1 and π_2 .

3

Marking Instructions

(a)

$$\overrightarrow{AB} = 1 - 2\mathbf{J} \qquad \overrightarrow{AC} = -1 + 2\mathbf{J} + 2\mathbf{k}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 0 \\ -1 & 2 & 2 \end{vmatrix} = (-4 - 0)\mathbf{I} - (2 - 0)\mathbf{J} + (2 - 2)\mathbf{k}$$

$$= -4\mathbf{I} - 2\mathbf{J}$$

Equation is

$$-4x - 2y = k$$

$$= -4(1) - 2(1) = -6$$
i.e. $-2x - y = -3$

$$2x + y = 3$$

(b) In π_1 : $2 \times 0 + a = 3 \Rightarrow a = 3$. In π_2 : $0 + 3a - b = 2 \Rightarrow b = 3a - 2 = 7$. Hence the point of intersection is (0, 3, 7). Line of intersection: direction from

$$\begin{vmatrix} 1 & j & k \\ -4 & -2 & 0 \\ 1 & 3 & -1 \end{vmatrix} = 21 - 4j - 10k$$

$$x = 0 + 2t; \ y = 3 - 4t; \ z = 7 - 10t$$

There are many valid variations on this (including symmetric form) and these were marked on their merits.

(c) Let the angle be θ , then

$$\cos\theta = \left| \frac{(-4\mathbf{i} - 2\mathbf{j}) \cdot (\mathbf{i} + 3\mathbf{j} - \mathbf{k})}{\sqrt{4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}} \right| = \left| \frac{-4 - 6}{\sqrt{20 \times 11}} \right| = \frac{5}{\sqrt{55}}$$
 1M, 1

or

$$\sin \theta = \frac{\left| \frac{(-4i - 2j) \times (i + 3j - k)}{\sqrt{4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}} \right|}{\sqrt{20} \sqrt{11}} = \sqrt{\frac{120}{20 \times 11}} = \sqrt{\frac{6}{11}}$$
1M

Hence $\theta \approx 47.6^{\circ}$.

Q15 - 10 marks

Lines L_1 and L_2 are given by the parametric equations

$$L_1: x = 2 + s, y = -s, z = 2 - s$$
 $L_2: x = -1 - 2t, y = t, z = 2 + 3t.$

Show that L_1 and L_2 do not intersect.

3

(b) The line L_3 passes through the point P(1, 1, 3) and its direction is perpendicular to the directions of both L_1 and L_2 . Obtain parametric equations for L_3 .

3

Find the coordinates of the point Q where L_3 and L_2 intersect and verify (c) that P lies on L_1 .

3

PQ is the shortest distance between the lines L_1 and L_2 . Calculate PQ. (d)

1

Marking Instructions

(a) Equating the x-coordinates: $2 + s = -1 - 2t \implies s + 2t = -3$ (1) Equating the y-coordinates: $-s = t \implies s = -t$ Substituting in (1): $-t + 2t = -3 \implies t = -3 \implies s = 3$. Putting s = 3 in L_1 gives (5, -3, -1) and t = -3 in L_2 , (5, -3, -7).

As the z coordinates differ, L_1 and L_2 do not intersect.

(b) Directions of L_1 and L_2 are: 1 - j - k and -2i + j + 3k. The vector product of these gives the direction of L_3 .

$$(\mathbf{i} - \mathbf{j} - \mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ -2 & 1 & 3 \end{vmatrix} = -2\mathbf{i} - \mathbf{j} - \mathbf{k}$$
 1M,1

Equation of L_3 :

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + 3\mathbf{k} + (-2\mathbf{i} - \mathbf{j} - \mathbf{k})u$$

$$= (1 - 2u)\mathbf{i} + (1 - u)\mathbf{j} + (3 - u)\mathbf{k}$$
Hence L_3 is given by $x = 1 - 2u$, $y = 1 - u$, $z = 3 - u$.

(c) Solving the x and y coordinates of L_3 and L_2 :

$$-1 - 2t = 1 - 2u \text{ and } t = 1 - u$$

$$\Rightarrow -1 = 3 - 4u \Rightarrow u = 1 \text{ and } t = 0$$
The point of intersection, Q , is $(-1, 0, 2)$ since $2 + 3t = 2$ and $3 - u = 2$.

$$L_1 \text{ is } x = 2 + s_1 y = -s_2 z = 2 - s. \text{ When } x = 1, s = -1 \text{ and hence}$$

$$y = 1 \text{ and } z = 3, \text{ i.e. } P \text{ lies on } L_1.$$

(d) $PQ = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$.