$1 \quad \mathrm{PQRS}$ is a parallelogram with vertices $\mathrm{P}(1,3,3), \mathrm{Q}(4,-2,-2)$ and $\mathrm{R}(3,1,1)$. Find the coordinates of S.

2 ABCD is a quadrilateral with vertices $\mathrm{A}(4,-1,3), \mathrm{B}(8,3,-1), \mathrm{C}(0,4,4)$ and $\mathrm{D}(-4,0,8)$.
(a) Find the coordinates of M , the midpoint of AB .
(b) Find the coordinates of the point T , which divides CM in the ratio $2: 1$.

3 PQR is an equilateral triangle of side 2 units.
$\overrightarrow{P Q}=\boldsymbol{a}, \overrightarrow{P R}=\boldsymbol{b}$ and $\overrightarrow{Q R}=\boldsymbol{c}$
Evaluate $\boldsymbol{a} .(\boldsymbol{b}+\boldsymbol{c})$ and hence identify two vectors which are perpendicular.

$4 \quad \mathrm{VABCD}$ is a pyramid with rectangular base ABCD.
The vectors $\overrightarrow{A B}, \overrightarrow{A D}$ and $\overrightarrow{A V}$ are given by
$\overrightarrow{A B}=8 \boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}$
$\overrightarrow{A D}=-2 \boldsymbol{i}+10 \boldsymbol{j}-2 \boldsymbol{k}$
$\overrightarrow{A V}=\boldsymbol{i}+7 \boldsymbol{j}+7 \boldsymbol{k}$
Express $\overrightarrow{C V}$ in component form.

5 ABCDEFGH is a cuboid.
K lies two thirds of the way along HG. (i.e. $\mathrm{HK}: \mathrm{KG}=2: 1$).
L lies one quarter of the way along FG. (i.e. $\mathrm{FL}: \mathrm{LG}=1: 3$).
$\overrightarrow{A B}, \overrightarrow{A D}$ and $\overrightarrow{A E}$ can be represented by the vectors $\left(\begin{array}{l}3 \\ 6 \\ 3\end{array}\right),\left(\begin{array}{c}-8 \\ 4 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -3 \\ 5\end{array}\right)$ respectively.
(a) Calculate the components of $\overrightarrow{A K}$.
(b) Calculate the components of $\overrightarrow{A L}$.
(c) Calculate the size of angle KAL.

