1. (a) Show that $f(x)=2 x^{2}-4 x+5$ can be written in the form $f(x)=a(x+b)^{2}+c$.
(b) Hence write down the coordinates of the stationary point of $y=f(x)$ and state its nature.
2. (a) The diagram below shows the graph of $y=f(x)$.

By first finding the equation of the given line $y=f(x)$ find algebraically and then sketch the graph of $y=f^{-1}(x)$ showing clearly the intersection with the axes.
(b) The graph of a function f intersects the x-axis at $(-a, 0)$ and $(e, 0)$ as shown.
There is a point of inflexion at $(0, b)$ and a maximum turning point at (c, d).
Sketch the graph of the derived function f^{\prime}.

3. A function g is defined by $g(x)=4^{x}$ for all real x such that $-1 \leq x \leq 1$. Identify the range of g.
4. Sketch the graph of $y=\cos \left(x^{\circ}+45^{\circ}\right)-1$ for $0 \leq x \leq 360$.
5. The graph of $y=f(x)$ is shown below.

Sketch the graph of $y=4-f(x+1)$, showing the effect on the four points shown.
6. A function g is defined by $g(x)=\log _{a}(x+b)$ where $a>1$ and b are constants. The graph of $y=g(x)$ is shown below.

(a) Find the values of a and b.
(b) State the values of $x \in \mathbb{R}$ for which $g(x)$ is undefined.
7. Three functions f, g and h are defined, on suitable domains, as follows:

$$
f(x)=\frac{1}{3} x \quad g(x)=2 x-5 \quad h(x)=\frac{1}{2}(3 x+5)
$$

(a) Calculate $k(x)=f(g(x))$.
(b) (i) Find $h(k(x))$ and $k(h(x))$.
(ii) Hence state the relationship between the functions h and k.

