

Past Paper Assessment Revision National 5 Mathematics Unit 3

GRAPHS OF QUADRATICS

The equation $x^2 - 6x + 8 = 0$ can also be written as (x - 2)(x - 4) = 0.

(a) Write down the roots of the equation $x^2 - 6x + 8 = 0$.

1

Part of the graph of $y = x^2 - 6x + 8$ is shown below.

(b) State the coordinates of the points A, B and C.

3

(c) What is the equation of the axis of symmetry of this graph?

(a) Factorise
$$x^2 - 4x - 21$$
.

2

(b) Hence write down the roots of the equation

$$x^2 - 4x - 21 = 0.$$

(c) The graph of $y = x^2 - 4x - 21$ is shown in the diagram.

Find the coordinates of the turning point.

3

The parabola with equation $y = x^2 - 2x - 3$ cuts the x-axis at the points A and B as shown in the diagram.

- (a) Find the coordinates of A and B.
- (b) Write down the equation of the axis of symmetry of $y = x^2 2x 3$.

4

The diagram shows part of the graph of $y = 5 + 4x - x^2$.

A is the point (-1, 0).

B is the point (5, 0).

- (a) State the equation of the axis of symmetry of the graph.
- (b) Hence, find the maximum value of $y = 5 + 4x x^2$.

2

2

The graph below shows part of the parabola with equation of the form

$$y = \left(x + a\right)^2 + b.$$

The minimum turning point (2, -4) is shown in the diagram.

State the values of

- (i) a
- (ii) b

A parabola has equation $y = x^2 - 8x + 19$.

- (a) Write the equation in the form $v = (x p)^2 + q$.
- (b) Sketch the graph of $y = x^2 8x + 19$, showing the coordinates of the turning point and the point of intersection with the y-axis.

3

The diagram below shows part of the graph of $y = ax^2$

Find the value of a. 2

SOLVING QUADRATIC EQUATIONS

Solve algebraically the following equations:

(a)
$$6y - y^2 = 0$$

(a)
$$6y - y^2 = 0$$
 (b) $8x^2 - 12x = 0$

(c)
$$4x^2 - 9 = 0$$

(c)
$$4x^2 - 9 = 0$$
 (d) $x^2 - 6x + 8 = 0$

(e)
$$x^2 - 2x - 8 = 0$$
 (f) $x^2 = 7x$

(f)
$$x^2 = 7x$$

Use the quadratic formula to solve the equation,

$$3x^2 + 5x - 7 = 0$$
.

Give your answers correct to 1 decimal place.

Solve the equation

$$2x^2 + 3x - 7 = 0.$$

Give your answers correct to 2 significant figures.

Find the discriminant for each of these and use it to determine the nature of the roots.

(a)
$$x^2 + 4x + 1$$

(a)
$$x^2 + 4x + 1$$
 (b) $x^2 + x + 4 = 0$

(c)
$$x^2 + 3x - 2 = 0$$

(c)
$$x^2 + 3x - 2 = 0$$
 (d) $3x^2 + 7x + 4 = 0$

(e)
$$2x^2 + 3x - 2 = 0$$

(e)
$$2x^2 + 3x - 2 = 0$$
 (f) $4x^2 + 9x + 6 = 0$

TRIGONOMETRIC GRAPHS

Part of the graph of $y = a \sin bx^{\circ}$ is shown in the diagram.

Write down the values of *a* and *b*.

Part of the graph of $y = a \sin bx^{\circ}$ is shown in the diagram.

State the values of a and b.

Part of the graph of $y = a \cos bx^{\circ}$ is shown in the diagram.

State the values of a and b.

2

Sketch the graph of $y = 4 \cos 2x^{\circ}$, $0 \le x \le 360$.

3

State the period of $y = \sin 2x^{\circ}$.

SOLVING TRIGONOMETRIC EQUATIONS

Solve the equation

$$4\sin x^{\circ} - 1 = 0$$
, $0 \le x < 360$.

Solve the equation

$$2 \tan x^{\circ} - 3 = 5,$$
 $0 \le x \le 360.$

Solve the following equation for $0 \le x \le 360$.

$$7\sin x^{\circ} - 3 = 0$$

Solve the equation

$$4 \tan x^{\circ} + 5 = 0$$
, $0 \le x \le 360$.

Solve the equation

$$2 \tan x^{\circ} + 7 = 0,$$
 $0 \le x < 360.$