

SURDS AND INDICES

- 1. Evaluate $8^{\frac{5}{3}}$
- 2. Simplify $\frac{n^5 \times 10n}{2n^2}$
- 3. Simplify $2a \times a^{-4}$
 - (a) Multiply out the brackets and simplify:

$$x^{\frac{1}{2}}\left(x^{-\frac{3}{2}} + x^{-\frac{1}{2}}\right)$$

- (b) Find the exact value of this expression when x = 6.
- 4. Expand $x^{\frac{1}{2}}(3x + x^{-2})$
- 5. Evaluate $2^0 + 3^{-1}$
- 6. Express $\sqrt{40} + 4\sqrt{10} + \sqrt{90}$ as a surd in its simplest form.
- 7. Simplify

(a)
$$\sqrt{2} \times \sqrt{18}$$

(b)
$$\sqrt{2} + \sqrt{18}$$

- 8. Simplify $2\sqrt{75}$
- 9. Express $\frac{4}{\sqrt{8}}$ with a rational denominator. Give your answer in its simplest form.
- 10. Express $\frac{4}{\sqrt{6}}$ with a rational denominator. Give your answer in its simplest form.

ALGEBRAIC FRACTIONS

1. Simplify
$$\frac{(x+4)^2}{x^2-x-20}$$

2. Express as a single fraction in its simplest form $\frac{1}{p} + \frac{2}{(p+5)}$

$$\frac{1}{p} + \frac{2}{(p+5)}$$

3. Express as a single fraction in its simplest form $\frac{4}{x+2} - \frac{3}{x-4}$

$$\frac{4}{x+2} - \frac{3}{x-4}$$

4. Express $\frac{5t}{s} \div \frac{t}{2s^2}$ in its simplest form.

TRIGONOMETRY: TRIANGLE FORMULAE

1. Paving stones are in the shape of a rhombus.

The side of each rhombus is 40 centimetres long.

Find the area of one paving stone.

2. The picture shows the entrance to a tunnel which is in the shape of part of a circle.

The diagram below represents the cross-section of the tunnel.

- The centre of the circle is O.
- MN is a chord of the circle.
- Angle MON is 50°.
- The radius of the circle is 7 metres.

Calculate the area of the cross-section of the tunnel.

- 3. In triangle PQR
 - QR = 6 centimetres
 - Angle PQR = 30°
 - Area of triangle PQR = 15 square centimtres.

Calculate the length of PQ.

4. Triangle ABC is shown below.

Calculate the length of AB

5. As part of their training, footballers run around a triangular circuit DEF.

- Angle EDF = 34°
- Angle DFE = 82°
- DE = 46.4 metres
- EF = 26.2 metres

How many **complete** circuits must they run to cover at least 1000 metres?

6. In a race, boats sail round three buoys represented by A, B, and C in the diagram below.

- B is 8 kilometres from A on a bearing of 060°.
- C is 11 kilometres from B.
- A is 13 kilometres from C.
- (a) Calculate the size of angle ABC.
- (b) Hence find the size of the shaded angle.

7. In the diagram below P, Q and R represent5 the positions of Portlee, Queenstown and Rushton respectively.

- Portlee is 25 kilometres due South of Queenstown.
- From Portlee, the bearing of Rushton is 072°.
- From Queenstown, the bearing of Rushton is 128°.

Calculate the distance between Portlee and Rushton.

Do not use a scale drawing.

- 8. In triangle ABC
- AC = 4 centimetres
- BC = 10 centimetres
- Angle BAC = 150°

Given that $\sin 30 = \frac{1}{2}$, show that $\sin B = \frac{1}{5}$

VECTORS

- 1. Find $|\underline{\boldsymbol{u}}|$, the magnitude of vector $\underline{\boldsymbol{u}} = \begin{pmatrix} 6 \\ -13 \\ 18 \end{pmatrix}$
- 2. The vectors $\underline{\boldsymbol{p}}$ and $\underline{\boldsymbol{q}}$ are shown in the diagram below. Find the resultant vector $\underline{\boldsymbol{p}} + \underline{\boldsymbol{q}}$. Express your answer in component form.

- 3. Find the resultant vector $2\underline{\boldsymbol{u}} \underline{\boldsymbol{v}}$ when $\underline{\boldsymbol{u}} = \begin{pmatrix} -2\\3\\5 \end{pmatrix}$ and $\underline{\boldsymbol{v}} = \begin{pmatrix} 0\\-4\\7 \end{pmatrix}$. Express your answer in component form.
- 4. The diagram shows a cube placed on top of a cuboid, relative to the coordinate axes.

A is the point (8, 4, 6). Write down the coordinates of B and C.