1. Chemical Elements - the Builders

How many materials are there?

- There are millions upon millions of different materials, but all materials are made up from a building set of 'basic bits' that we call elements.
- Scientists have identified about 100 elements so far, but more will probably be found.

What are all materials made from?

- 1. There are approximately _____ elements.
- 2. There are more materials are made up from a combination of elements.

What are elements made from?

- 1. Elements are made up from a $\frac{t}{2} \circ m \leq 1$.
- 2. Particles in an element are all the $\frac{same}{}$.

 Particles in a non element are n o t the same.
- 3. 2,500,000 atoms placed side by side, would fit across one millimetre?

What are elements like?

Elements are different from each other in many ways. They can look different or they can behave differently. The way elements look and behave are called **properties**.

The properties of an element scientists often look at first are:

- its appearance
- whether it is a solid, liquid or gas at room temperature (20°C)
- what temperature it boils and melts at
- whether it is a metal or non-metal.

Experiment Results

e-q	element	appearance	solid, liquid gas	boiling point	_	metal / non - metal
J	copper	red/ orange	SOLID	2567°c	/683°C	metal
	mercury	silver	Liquid	358°C	-39°C	metal
	oxygen	Colourless	GAS	-183°C	-218°C	non-metal

Conclusion: 3 ways in which elements can be different from each other are:

1.	Appearance	
2.	State	any 3
3.	Metal or non-metal	
	Boiling Point or Meiting Point	

2. The Periodic Table

The Periodic Table shows all the elements we know about. If a material is not an element it will not be on the Periodic table.

Stick your periodic table in here.

i 1 1 1 1					H Hydrogen 1			•									H8 Halkum 2
Li	Be											В	C	N	0	F	Ne
Litkkum	Baryllium											Boron	Carbon	Nitrogen	Oxygan	Huorine	Neon
3	4	ļ										5	8.	7	8	8	10
Na	Mg											Al	SI	P	S	Ci	Ar
Sodlum	Magnesium											Aleminium	Bilicon	Phosphorus	8ulphur	Chlorina	Argon
11	12											13	14	15	18	17	18
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Gø	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Gebalt	Nickel	Copper	Zina	Gatilum	Germealem	Arsenia	Selanlum	Bromina	Krypton
19	20	21	22	23	24	25	26	27	28	28	30	31	32	33	34	35	38
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium	Stroatium	Yitrium	Zirconium		Molyadenum			Rhodlum	Palladium	Silvar	Cadmium	Indlum	79n	Antimony	Tellarlum	lodine	Хепол
37	38	39	40	41	42	43	44	45	46	47	48	49	60	51	52	83	54
Cs	Ва	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	ŤI	Pb .	Bi	Po	At	Rn
Caeslum	Barlum	Lanthanum		Tantalum		Ahenlum	mulmaO	Iridium	Platinum	Gold	Mercury	Thellium	Lead	Blamuth	Potonium	Astatina	Radon
55	. 56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	88
Fr	Ra	Ac					·		······································								
- 1																	
Francium	Rødlum	Actinium															

Instead of writing the name all the time, each element is given a symbol.

Complete the table on the next page for the first 20 elements. Copy the symbols carefully-sometimes it is a capital letter and sometimes it is a small letter.

Element	Symbol
Hydrogen	H
Helium	He
Lithium	Li
Beryllium	Be
Boron	В
Carbon	C
Nitrogen	N
Oxygen	O
Fluorine	F
Neon	Ne
Sodium	Na
Magnesium	Mg
Aluminium	Αί
Silicon	Si
Phosphorus	P
Sulfur	S
Chlorine	Cl
Argon	Ar
Potassium	K
calcium	Ca

Use the Periodic Table to find out which of these substances are elements.

water, (sulphur, silver, wood, (iron,) air, carbon, (gold.

Circle the substances that are elements.

Stick another Periodic Table in here.

The Periodic Table of the elements

! ! !		E 10			H Hydrogen 1			ē .				(Ton-	ME	TAL	5)	Hellum 2
LI Lithium 3	Bė Beryllium 4				M	ETA	LS					B Boron 5	C Carbon 6	N Nitrogen 7	Oxygen 8	F Ruorine 9	Neon 10
Na Sodlum 11	Mg Magneslum 12											Al Aluminium 13	SI Silicon 14	P Phosphorus 15	S Sulphur 16	Ci Chlorine 17	Ar Argon 18
K Potasslum 19	Ca Calcium 20	Sc Scandium 21	TI Titanlum 22	V Vanadium 23	Cr Chromlum 24	Mn Manganese 25	Fe Iron 26	Co Cobalt 27	NI Nickel 28	Cu Copper 29	Zn Zinc 30	Ga Gallium 31	Gø Germanlum 32	As Amenic 33	S8 Selenium 34	Br Bromine 35	Kr Krypton 38
Rb Rubidium 37	Sr Strontium 38	Y Yttrlum 39	Zr Zirconium 40	Nb Nioblum 41	Mo Molybdenum 42	TC Technetium 43	Ru Ruthenlum 44	Rh Rhodlum 45	Pd Palladium 46	Ag Bliver 47	Cd Cadmlum 48	in Indium 49	Sn Tin 50	Sb Antimony 51	Te Tellurium 52	lodine 53	X8 Xenon 54
Cs Caeslum 55	Ba Barlum 56	La Lanthanum 57	Hf Hafnlum 72	Ta Tantalum 73	W Tungsten 74	Re Rhenlum 75	Os Osmlum 76	ir Iddium 77	Pt Platinum 78	Au Gold 79	Hg Mercury 80	TI Thaillum 81	Pb Lead 82	Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 88
Fr Francium 87	Ra Radium 88	Ac Actinium 89															

Choose a colour and shade in all the metals. Left of the purple wie Choose a colour and shade in all the non metals. Right of the purple wie Choose a colour and shade in all the gases

Choose another colour and shade in all the liquids

Add a key for each colour used.

- 1. All metals are NoT solids.
- 2. All non-metals are $N \circ T$ solids.

3. How do we get all the other Materials?

New materials are formed when different atoms join together.

These new materials are called compounds.

Notes:

Draw a diagram of a model of an element.

Draw a diagram of a model of a compound.

Complete the following sentences. Add the word element or compound to complete them.

Elements only contain one kind of atom. Compounds contain more than one kind of atom.

Do compounds look like the elements they are made from?

Set	Name	Colour	State	Element
			solid/	or
			liquid/gas	compound
1	Nickel	Silver	SOLID	ELEMENT
	Chlorine	pale green	GAS	ELEMENT
	Nickel Chloride	green	SOLID	COMPOUNE
2	Copper	orange-brown	SOLID	ELEMENT
	oxygen	colourless	9A5	ELEMENT
:8	copper oxide	black	SOLID	COMPOUND

e.9

Set	Name	Colour	State solid/ liquid/gas	Element or compound
3	ZINC	Silver	SOLID	ELEMENT
	bromine	orange	Liguid	ELEMENT
	Zinc bromide	White	SOLID	COMPOUND
4				
	ete.			
		1		

(i)	1. Compounds <u>do not look</u> <u>like the</u> elements from which they are made up?
	2. Is it possible to get the names of the elements from which a compound is made by only looking at the name of the compound? YES
	3. What do all the compounds' names have in common?

4. Making Compounds

Notes:

Magnesium is a <u>Silver</u> metal and oxygen is a <u>Colourless</u> gas.

The <u>elements</u> magnesium and oxygen combine together to make a new <u>Compound</u> called magnesium oxide.

The new compound is a ______ solid and does not _____ like the elements it is made from.

magnesium + oxygen — magnesium oxide

Making another Compound

Notes:

The iodine solution changed colour from brown to colourless.

This is because the two <u>elements</u> iodine and zinc have joined together to form the <u>compound</u> zinc iodide.

zinc + iodine → zinc iodide

Naming Compounds

You have probably noticed that the name of the compounds you have just made end in '-ide'. This is usually true for compounds of only two elements. The name of the metal stays the same and the name of the non-metal element changes to '-ide'.

e.g oxygen turns to oxide iodine turns to iodide

Notes: Complete the table.

Element 1	Element 2	Name of Compound
sodium	bromine	sodium bromide
magnesium	chlorine	magnesium chloride
silver	oxygen	silver oxide
aluminium	iodine	aluminium iodide
calcium	oxygen	calcium oxide

We can also get the names of elements in a compound by looking at the name of the compound.

e.g. the compound iron oxide is made up from the elements iron and oxygen.

Notes: Complete the table.

Compound	Metal element	Non-metal element
lead chloride	lead	chlorine
copper fluoride	copper	fluorine
iron sulphide	iron	Sulphur
lithium phosphide	lithium	phosphorus

5. Formulae of Compounds

We use symbols to show atoms, such as H for hydrogen or Cl for chlorine. We can also use symbols to show how atoms combine in compounds. When we combine symbols like this, we write a **formula**. Here is the formula for the compound magnesium chloride:

To write a formula you need to know which elements are in the compound, and how many atoms of each.

Compound	No. of Carbon atoms	No. of Hydrogen atoms	No. of Nitrogen atoms	No. of Oxygen Atoms	formula
Water	0	2	0	1	H ₂ O
Ethane	2	6	0	0	C2H6
Ethanoic acid	2	4	0	2	C ₂ H ₄ O ₂
Glycol	2	6	0	2	C2H6O2
Methane	1	4	0	0	СН4
methylamine	1	5	T	1	CH ₃ NH ₂

Working out formulae for compounds

а	calcium oxide	f	magnesium chloride
	CaO		Mg Cl2
b	sodium iodide	9	aluminium chloride
	NaI		Al Cl3
С	sodium oxide	h	aluminium oxide
	Na2O		A1203
d	calcium iodide	i	aluminium nitride
	Ca I ₂		AIN
e	magnesium oxide	j	magnesium nitride
	Mg O		Mg3N2

7. Solutions

Solid	Solid Left Behind?	Clear or Cloudy	Colour?
Α	YES	Cloudy	Green
В	YES	Cloudy	White
С	No	Clear	Green
D	No	Clear	Colourless

The solids you have tested which form clear mixtures are called solutions. It does not matter whether they are coloured or colourless.

Remember we say a solid (or liquid), which forms a solution has dissolved.

A substance, which dissolves is said to be soluble and one which does not dissolve is said to be insoluble.

8. Speeding up Dissolving

Effect of Stirring

Stirring <u>Speeds up</u> dissolving.

Effect of Particle Size

The <u>Smaller</u> the size of the particles the faster they <u>dissolve</u>.

Effect of Temperature

The hotter the water the faster solid C